Chapter 12 part 1

Acids, bases and equilibrium

Theories of Acids and Bases

A- The Arrhenius Theory of acids and bases

 Acids are substances that produce hydrogen ions in aqueous solution as HCl.

$$HCl_{(aq)}
ightarrow H^+_{(aq)} + Cl^-_{(aq)}$$

 Bases are substances that produce hydroxide ions in aqueous solution as NaOH.

$$\operatorname{NaOH}(s) \xrightarrow{\operatorname{H_2O}} \operatorname{Na}^+(aq) + \operatorname{OH}^-(aq)$$

- Limitation of the Arrhenius Definition of Acids and Bases
- The Arrhenius definition can only describe acids and bases in an aqueous environment

B- The Brønsted-Lowry Theory of acids and bases

- An acid is a proton (hydrogen ion) donor. We call the product that remains after an acid donates a proton the conjugate base of the acid (This species is a base because it can accept a proton to re-form the acid).
- A base is a proton (hydrogen ion) acceptor. We call the product that results when a base accepts a proton the conjugate acid of the base (This species is an acid because it can give up a proton and thus re-form the base)

Conjugate Acid-Base Pairs

Bronsted acids

• **Monoprotic acids**; that is, each unit of the acid yields one hydrogen ion upon ionization:

 $\begin{aligned} \mathrm{HC1}(aq) &\longrightarrow \mathrm{H}^{+}(aq) + \mathrm{C1}^{-}(aq) \\ \mathrm{HNO}_{3}(aq) &\longrightarrow \mathrm{H}^{+}(aq) + \mathrm{NO}_{3}^{-}(aq) \\ \mathrm{CH}_{3}\mathrm{COOH}(aq) &\longleftrightarrow \mathrm{CH}_{3}\mathrm{COO}^{-}(aq) + \mathrm{H}^{+}(aq) \end{aligned}$

- The ionization of acetic acid is incomplete (note the double arrows), it is a weak electrolyte. For this reason it is called a weak acid
- On the other hand, HCl and HNO3 are strong acids because they are strong electrolytes, so they are completely ionized in solution (note the use of single arrows).

 A diprotic acid, each unit of the acid gives up two H⁺ ions, in two separate steps

$$\mathbf{H}_{2}SO_{4}(aq) \longrightarrow \mathbf{H}^{+}(aq) + \mathbf{H}SO_{4}^{-}(aq)$$
$$\mathbf{H}SO_{4}^{-}(aq) \rightleftharpoons \mathbf{H}^{+}(aq) + SO_{4}^{2-}(aq)$$

• Triprotic acids, which yield three H⁺ ions

 $\mathbf{H}_{3}\mathbf{PO}_{4}(aq) \Longrightarrow \mathbf{H}^{+}(aq) + \mathbf{H}_{2}\mathbf{PO}_{4}^{-}(aq)$ $\mathbf{H}_{2}\mathbf{PO}_{4}^{-}(aq) \Longrightarrow \mathbf{H}^{+}(aq) + \mathbf{HPO}_{4}^{2-}(aq)$ $\mathbf{HPO}_{4}^{2-}(aq) \Longrightarrow \mathbf{H}^{+}(aq) + \mathbf{PO}_{4}^{3-}(aq)$

Bronsted bases

• Sodium hydroxide (NaOH) and barium hydroxide Ba(OH)2 are strong electrolytes. This means that they are completely ionized in solution:

 $\begin{array}{c} \operatorname{NaOH}(s) \xrightarrow{\operatorname{H_2O}} \operatorname{Na}^+(aq) + \operatorname{OH}^-(aq) \\ \operatorname{Ba}(\operatorname{OH})_2(s) \xrightarrow{\operatorname{H_2O}} \operatorname{Ba}^{2+}(aq) + 2\operatorname{OH}^-(aq) \end{array}$

- The OH⁻ ion can accept a proton as follows: $H^+(aq) + OH^-(aq) \longrightarrow H_2O(l)$
- Thus, OH⁻ is a Brønsted base.
- Ammonia (NH3) is classified as a Brønsted base because it can accept a H⁺ ion

$$\mathrm{NH}_{3}(aq) + \mathrm{H}_{2}\mathrm{O}(l) \rightleftharpoons \mathrm{NH}_{4}^{+}(aq) + \mathrm{OH}^{-}(aq)$$

Molecular Structure and the Strength of Acids

• In this series of **binary acids** (through a group, the atomic size increases), the weaker the bond (H—X), the stronger the acid. So that the strength of the acids increases as follows:

$HF \ll HC1 < HBr < HI$

- In this series of binary acids (through a period, the electronegativity increases), the greater attraction of the bonding electron pairs (H—X), so easier to dissociate the H^{+,} the stronger the acid. So that the strength of the acids increases as follows:
 - PH3 < SH2 < HCl

Oxoacids contain hydrogen, oxygen, and one other element Z, which occupies a central position.

H-0-

:0:

:0:

-<u>0</u>-<u>C</u>1-<u>0</u>:

• Oxoacids having the same central atom but different numbers of oxygen. Within this group, acid strength increases as the number of oxygen atoms increases.

 $\rm HC1O_4 > \rm HC1O_3 > \rm HC1O_2 > \rm HC1O$

• Oxoacids having different central atoms but have the same number of oxygen. Within this group, acid strength increases with increasing electronegativity of the central atom.

 $HClO_3 > HBrO_3$

C-Lewis acids and bases

- According to Lewis's definition, a base is a substance that can donate a pair of electrons, and an acid is a substance that can accept a pair of electrons.
- The significance of the Lewis concept is that it is much more general than other definitions; it includes as acid-base reactions many reactions that do not involve Brønsted acids.

Bronsted acid

- **Bronsted acid** have an empty orbital capable of receiving electron pair from the base.
- Chemical species that can function as lewis acid are:
- 1. Molecules or atoms with incomplete octet as: AlCl₃, BF₃
- 2. Many simple cation as:Fe⁺³, Cu⁺²
- 3. Molecules in which the central atom with expanded octet as:SnCl4, PF5
- 4. Some molecules with acidic site because of one or more multiple bonds as:SO₂,CO₂

- Consider, for example, the reaction between boron trifluoride (BF3) and ammonia. The B atom in BF3 is sp2-hybridized. The vacant, unhybridized 2p orbital accepts the pair of electrons from NH3.
- Note that a coordinate covalent bond is formed between the B and N atoms.

• The hydration of carbon dioxide to produce carbonic acid can be understood in the Lewis framework

The Ion Product of Water

• Water is a very weak electrolyte, but it does undergo ionization to a small extent:

$$\begin{array}{c} H \longrightarrow O: \ + \ H \longrightarrow O: \ \Longrightarrow \ \left[\begin{array}{c} H \longrightarrow O \longrightarrow H \\ H \end{array} \right]^{+} \ + \ H \longrightarrow O: \ \end{array}$$

where Kw is called the ion-product constant.

 In pure water at 25C, the concentrations of both ions are equal and found to be 1.0 x 10⁻⁷ M. Thus,

$$K_{\rm w} = [{\rm H}^+][{\rm OH}^-] = 1.0 \times 10^{-14}$$

 In practice, we can change the concentration of either H⁺ or OH⁻ ions in solution, but we cannot vary both of them independently. This mean increase the H⁺ conc. accompanied by decrease in OH⁻ conc. and vice versa.

pH—A Measure of Acidity

 The concentrations of H⁺ ions in aqueous solutions are frequently very small numbers and therefore inconvenient to work with. A more practical measure called pH:

 $pH = -log[H_3O^+]$ or $pH = -log[H^+]$

Acidic solutions:	$[{\rm H}^+] > 1.0 \times 10^{-7} M, {\rm pH} < 7.00$
Basic solutions:	$[\mathbf{H}^+] < 1.0 \times 10^{-7} M, \mathrm{pH} > 7.00$
Neutral solutions:	$[\mathbf{H}^+] = 1.0 \times 10^{-7} M, \mathrm{pH} = 7.00$

- Notice that pH increases as [H+] decreases.
- Similarly, we define pOH as:

pOH = -log[OH⁻]
 The relationship between pH and pOH is

pH + pOH = 14.00

Weak Acids and Acid Ionization Constants

• Consider a **weak monoprotic acid**, HA. Its ionization in water is represented by:

 $\operatorname{HA}(aq) + \operatorname{H}_2\operatorname{O}(l) \underset{\longrightarrow}{\longrightarrow} \operatorname{H}_3\operatorname{O}^+(aq) + \operatorname{A}^-(aq) \qquad \qquad \operatorname{HA}(aq) \underset{\longrightarrow}{\longrightarrow} \operatorname{H}^+(aq) + \operatorname{A}^-(aq)$

• The equilibrium expression for this ionization is

$$K_{a} = \frac{[H_{3}O^{+}][A^{-}]}{[HA]}$$
 or $K_{a} = \frac{[H^{+}][A^{-}]}{[HA]}$

- where Ka, the acid ionization constant, is the equilibrium constant for the ionization of an acid at a given temperature. The strength of the acid HA is measured quantitatively by the magnitude of Ka. The larger Ka, the stronger the acid.
- Only weak acids have Ka values associated with them.

• Diprotic and polyprotic acids ionize in a stepwise manner, that is, they lose one proton at a time. An ionization constant expression can be written for each ionization stage.

$$H_{2}CO_{3}(aq) \Longrightarrow H^{+}(aq) + HCO_{3}^{-}(aq) \qquad K_{a_{1}} = \frac{[H^{+}][HCO_{3}^{-}]}{[H_{2}CO_{3}]} \qquad 4.2 \times 10^{-7}$$
$$HCO_{3}^{-}(aq) \Longrightarrow H^{+}(aq) + CO_{3}^{2-}(aq) \qquad K_{a_{2}} = \frac{[H^{+}][CO_{3}^{2-}]}{[HCO_{3}^{-}]} \qquad 4.8 \times 10^{-11}$$

- For a given acid, the first ionization constant is much larger than the second ionization constant, and so on.
- This trend is reasonable because it is easier to remove an H⁺ ion from a neutral molecule than to remove another H⁺ from a negatively charged ion derived from the molecule.

Weak Bases and Base Ionization Constants

- The ionization of weak bases is treated in the same way as the ionization of weak acids.
- When ammonia dissolves in water, it undergoes the reaction $NH_3(aq) + H_2O(l) \Longrightarrow NH_4^+(aq) + OH^-(aq)$

• The base ionization constant (Kb), is the equilibrium constant for the ionization reaction,

 $K_{\rm b} := \frac{[\rm NH_4^+][\rm OH^-]}{\rm I}$

• The larger Kb, the stronger the base. Only weak bases have Kb values associated with them.

The Relationship Between Conjugate Acid-Base Ionization Constants

$$CH_{3}COOH(aq) \Longrightarrow H^{+}(aq) + CH_{3}COO^{-}(aq)$$
$$K_{a} = \frac{[H^{+}][CH_{3}COO^{-}]}{[CH_{3}COOH]}$$

 $CH_3COO^{-}(aq) + H_2O(l) \Longrightarrow CH_3COOH(aq) + OH^{-}(aq)$

write the base ionization constant as

 $K_{\rm b} = \frac{[\rm CH_3COOH][\rm OH^-]}{[\rm CH_3COO^-]}$

The product of these two ionization constants is given by

$$K_{a}K_{b} = \frac{[H^{+}][CH_{3}COO^{-}]}{[CH_{3}COOH]} \times \frac{[CH_{3}COOH][OH^{-}]}{[CH_{3}COO^{-}]}$$

= [H^{+}][OH^{-}]
= K_{w}
$$K_{a}K_{b} = K_{w}$$
$$pK_{a} + pK_{b} = 14.00$$

Identify each of the following species as a Brønsted acid, base, or both: (a) PO_4^{3-} , (b) ClO_2^{-} , (c) NH_4^+ , (d) HCO_3^{-} .

Answer: a) Brønsted base. (b) Brønsted base.(c) Brønsted acid. (d) Brønsted base and Brønsted acid (amphoteric).

 Identify the conjugate acid-base pairs in the reaction between ammonia and hydrofluoric acid in aqueous solution.

Answer

 $NH_3(aq) + HF(aq) \Longrightarrow NH_4^+(aq) + F^-(aq)$

HF and F⁻ areacid 1 with conjugated base 1 NH3 and NH4⁺ are base2 with conjugated acid2

Classify each of these following species as a Lewis acid or a Lewis base: (a) CO_2 , (b) H_2O , (c) I^- , (d) SO_2 , (e) NH_3 , (f) OH^- , (g) H^+ , (h) BCl_3 .

a- acid - b- base -c- base -d- acid -e- base -f- base -g- acid h- acid A solution of carbon dioxide in water has a hydronium ion concentration of 2.0×10⁻⁶M. What is the concentration of hydroxide ion at 25 °C?

$$[\mathrm{OH^{-}}] = \frac{K_{\mathrm{w}}}{[\mathrm{H_{3}O^{+}}]} = \frac{1.0 \times 10^{-14}}{2.0 \times 10^{-6}} = 5.0 \times 10^{-9}$$

• What is the hydronium ion concentration in an aqueous solution with a hydroxide ion concentration of 0.001 M at 25°C?

$$K_{w} = [H^{+}][OH^{-}] = 1.0 \times 10^{-14}$$
$$\frac{K_{w}}{[OH^{-}]} = \frac{1.0 \times 10^{-14}}{0.001}$$

 $[{\rm H}_{3}{\rm O}^{+}] = 1 \times 10^{-11} M$

In a NaOH solution $[OH^-]$ is $2.9 \times 10^{-4} M$. Calculate the pH of the solution.

 $pOH = -log[OH^{-}]$ = -log(2.9 × 10⁻⁴) = 3.54 pH + pOH = 14.00pH = 14.00 - pOH= 14.00 - 3.54 = 10.46

If the concentration of *NaOH* in a solution is 2.5×10^{-4} *M*, what is the concentration of H_3O^+ ?

NaOH(s)
$$\xrightarrow{H_2O}$$
 Na⁺(aq) + OH⁻(aq)
 $K_w = [H^+][OH^-] = 1.0 \times 10^{-14}$
 $\frac{1.0 \times 10^{-14}}{[OH^-]} = [H_3O^+]$
 $\frac{1.0 \times 10^{-14}}{2.5 \times 10^{-4}} = [H_3O^+] = 4.0 \times 10^{-11} M_1$

Calculate the pH of the above solution?

 $pH = -\log 4.0 \times 10^{-11}$ pH = 10.4

Find the pH of a solution of 0.002 M of HCl.

$$HCl(aq) \longrightarrow H^+(aq) + Cl^-(aq)$$
$$[H^+] = 2.0 \times 10^{-3} M$$
$$pH = -\log[2.0 \times 10^{-3}] = 2.70$$

Calculate the pH of a $0.020 M Ba(OH)_2$ solution.

Ba(OH)₂ is a strong base; each Ba(OH)₂ unit produces two OH⁻ ions:

1 mole of $Ba(OH)_2$ equivalent to 2 mole of OH^2 So 0.02 mole of $Ba(OH)_2$ equivalent to 0.04 mole of OH^2

 $[OH^{-}] = 0.040 M$ $pOH = -\log 0.040 = 1.40$ pH = 14.00 - pOH = 14.00 - 1.40 = 12.60

The pH of rainwater collected in a certain region of the northeastern United States on a particular day was 4.82. Calculate the H⁺ ion concentration of the rainwater.

 $pH = -log[H^+] = 4.82$

 $\log[H^+] = -4.82$ $[H^+] = 10^{-4.82} = 1.5 \times 10^{-5} M$

If moist soil has a pH of 7.84, what is the H⁺ concentration of the soil solution?

 $pH = -\log[H^+]$ $7.84 = -\log[H^+]$ $[H^+] = 1.45 imes 10^{-8} M$ The pH of a 0.10 M solution of formic acid (HCOOH) is 2.39. What is the K_a of the acid?

HCOOH = H++HCOO-

$$pH = -log[H^+]$$

 $[H^+]' = 4.1 \times 10^{-3} M$

Initial (<i>M</i>): Change (<i>M</i>):	HCOOH(aq) 0.10 -4.1 × 10 ⁻³	\Rightarrow	$H^+(aq)$ 0.00 +4.1 × 10 ⁻³	+	$HCOO^{-}(aq)$ 0.00 +4.1 × 10 ⁻³
Equilibrium (M):	$(0.10 - 4.1 \times 10^{-3})$		4.1×10^{-3}		4.1×10^{-3}
		$K_a =$	$\frac{[\text{H}^+][\text{HCOOR}]}{[\text{HCOOR}]}$ $\frac{(4.1 \times 10^{-1})}{(4.1 \times 10^{-1})}$	0 ⁻ [] ³)(4	$\frac{1}{4.1 \times 10^{-3}}$
		$(0.10 - 4.1 \times$			\times 10 ⁻³)

 $= 1.8 \times 10^{-4}$

What is the Kb of the base?

$$K_{\rm b} = \frac{K_{\rm w}}{K_{\rm a}}$$

 $K_b = 1 \times 10^{-14} / 1.8 \times 10^{-4} = 5.56 \times 10^{-11}$

What is the concentration of hydronium ion and the pH in a 0.534-M solution of formic acid?

 $\mathrm{HCO}_{2}\mathrm{H}(aq) + \mathrm{H}_{2}\mathrm{O}(l) \rightleftharpoons \mathrm{H}_{3}\mathrm{O}^{+}(aq) + \mathrm{HCO}_{2}^{-}(aq) \quad K_{\mathrm{a}} = 1.8 \times 10^{-4}$

	HCO₂H +	. H₂O ,	⊇ H₃O⁺
initial concentration (M)	0.534	~0	0
Change (M)	-x	X	x
Equilibrium concentration (M)	0.534 + (-x)	x = x + 0	0 + x = x

$$egin{aligned} K_{ extsf{a}} &= 1.8 imes 10^{-4} = rac{[extsf{H}_3 extsf{O}^+][extsf{HCO}_2^-]}{[extsf{HCO}_2 extsf{H}]} \ &= rac{(x)(x)}{0.534 - x} = 1.8 imes 10^{-4} \end{aligned}$$

$$K_{\rm a} = 1.8 \times 10^{-4} = \frac{x^2}{0.534}$$

$$x^{2} = 0.534 \times (1.8 \times 10^{-4})$$
$$= 9.6 \times 10^{-5}$$
$$x = \sqrt{9.6 \times 10^{-5}}$$
$$= 9.8 \times 10^{-3}$$

$$\begin{split} [\mathrm{H}_{3}\mathrm{O}^{+}] &= 0 + x = 0 + 9.8 \times 10^{-3} \; M \\ &= 9.8 \times 10^{-3} \; M \\ pH = -\log(9.8 \times 10^{-3}) = 2.01 \end{split}$$

What is the pH of a 0.40 *M* ammonia solution? K_b 1.8 × 10⁻⁵

	$NH_3(aq) +$	$H_2O(l) \Longrightarrow NH_4^+(aq) +$	$OH^{-}(aq)$
Initial (M):	0.40	0.00	0.00
Change (M):	-x	+x	+x
Equilibrium (M):	0.40 - x	x	x

$$K_{b} = \frac{[NH_{4}^{+}][OH^{-}]}{[NH_{3}]}$$

$$1.8 \times 10^{-5} = \frac{x^{2}}{0.40 - x}$$

$$x = 2.7 \times 10^{-3} M$$
At equilibrium, $[OH^{-}] = 2.7 \times 10^{-3} M$. Thus,

$$pOH = -\log (2.7 \times 10^{-3})$$

$$= 2.57$$

$$pH = 14.00 - 2.57$$

$$= 11.43$$

. Calculate K_b and pK_b of the butyrate ion $(CH_3CH_2CH_2CO_2)$. The pK_a of butyric acid at 25°C is 4.83. Butyric acid is responsible for the foul smell of rancid butter.

$$pK_a + pK_b = 14.00$$

 $4.83 + pK_b = 14.00$
 $pK_b = 14.00 - 4.83 = 9.17$
Because $pK_b = -\log K_b, K_b$ is $10^{-9.17} = 6.8 \times 10^{-10}$.

Calculate K_a and pK_a of the dimethylammonium ion $((CH_3)_2 NH_2^+)$. The base ionization constant K_b of dimethylamine $((CH_3)_2 NH)$ is 5.4×10^{-4} at 25°C.

$$\begin{split} K_a K_b &= K_w \\ K_a (5.4 \times 10^{-4}) &= 1.01 \times 10^{-14} \\ K_a &= 1.9 \times 10^{-11} \\ p K_a &= -\log(1.9 \times 10^{-11}) = 10.72 \,. \end{split}$$

Chapter 12 part 2 Solubility equilibrium

Solubility Equilibrium

• **Solubility equilibrium** is a type of dynamic heterogenous equilibrium that exists when a chemical compound in the solid state is in chemical equilibrium with a solution of that compound.

 $\operatorname{AgCl}(s) \Longrightarrow \operatorname{Ag}^+(aq) + \operatorname{Cl}^-(aq)$

• The solubility product constant, Ksp , is the equilibrium constant for a solid substance dissolving in an aqueous solution. It represents the level at which a solute (ionic compound) dissolves in water. The more soluble a substance is, the higher the Ksp value it has.

 $K_{sp} = [Ag^+][C1^-]$

The solubility product constant of a compound is the product of the molar concentrations of the constituent ions, each raised to the power of its stoichiometric coefficient in the equilibrium equation.

- Molar solubility is the number of *moles* of solute per liter of solution.
- Molar solubility, solubility, and solubility product all refer to a saturated solution.

• MgF₂

$$MgF_2(s) \Longrightarrow Mg^{2+}(aq) + 2F^{-}(aq) \qquad K_{sp} = [Mg^{2+}][F^{-}]^2$$

• Ag₂CO₃

$$\operatorname{Ag}_2\operatorname{CO}_3(s) \Longrightarrow 2\operatorname{Ag}^+(aq) + \operatorname{CO}_3^{2-}(aq) \qquad K_{\operatorname{sp}} = [\operatorname{Ag}^+]^2[\operatorname{CO}_3^{2-}]$$

• Ca₃(PO₄)₂

 $Ca_{3}(PO_{4})_{2}(s) \Longrightarrow 3Ca^{2+}(aq) + 2PO_{4}^{3-}(aq) \qquad K_{sp} = [Ca^{2+}]^{3}[PO_{4}^{3-}]^{2}$

TABLE 17.3	Relationship Between K _{sp} and Molar Solubility (<i>s</i>)					
Compound	K _{sp} Expression	Cation	Anion	Relation Between K _{sp} and s		
AgC1	[Ag ⁺][C1 ⁻]	S	S	$K_{\rm sp}=s^2; s=(K_{\rm sp})^{\frac{1}{2}}$		
BaSO ₄	[Ba ²⁺][SO ₄ ²⁻]	5	5	$K_{\rm sp} = s^2; s = (K_{\rm sp})^{\frac{1}{2}}$		
Ag ₂ CO ₃	[Ag ⁺] ² [CO ₃ ²⁻]	2 <i>s</i>	S	$K_{\rm sp} = 4s^3; s = \left(\frac{K_{\rm sp}}{4}\right)^{\frac{1}{5}}$		
PbF ₂	[Pb ²⁺][F ⁻] ²	5	2 <i>s</i>	$K_{\rm sp} = 4s^3; s = \left(\frac{K_{\rm sp}}{4}\right)^{\frac{1}{3}}$		
Al(OH)3	[Al ³⁺][OH ⁻] ³	5	35	$K_{\rm sp} = 27s^4; s = \left(\frac{K_{\rm sp}}{27}\right)^{\frac{1}{2}}$		
Ca ₃ (PO ₄) ₂	$[Ca^{2+}]^3 [PO_4^{3-}]^2$	35	2 <i>s</i>	$K_{\rm sp} = 108s^5; s = \left(\frac{K_{\rm sp}}{108}\right)^{\frac{1}{3}}$		

Examples

- The solubility of calcium sulfate (CaSO₄) is found to be 0.67 g/L. Calculate the value of *K*sp for calcium sulfate.
- The molar solubility of CaSO4 [CaSO4]= **0.67/136** mole/L

 $= 4.9 \text{ x } 10^{-3} \text{ M}$

- [CaSO4] represent only the concentration of the dissolved solid
- As each 1 mole of (CaSO4) give 1 mole for each of the ions, So

$$CaSO_{4(s)} \iff Ca^{2+}_{(aq)} + SO_{4}^{2-}_{(aq)}$$

$$S \qquad S$$

$$[CaSO_{4}] = [Ca^{2+}] = [SO_{4}^{2-}] = 4.9x10^{-3} M$$

$$K_{sp} = [Ca^{2+}][SO_{4}^{2-}]$$

$$= (4.9 \times 10^{-3})(4.9 \times 10^{-3})$$

$$= 2.4 \times 10^{-5}$$

Examples

• The Ksp of silver bromide (AgBr) is 7.7 x 10⁻¹³. Calculate its molar solubility and solubility (g/L).

$$K_{sp} = [Ag^{+}][Br^{-}]$$

7.7 × 10⁻³ = (s)(s)
$$s = \sqrt{7.7 \times 10^{-13}} = 8.8 \times 10^{-7} M$$

 $[Ag^+] = 8.8 \times 10^{-7} M$ $[Br^-] = 8.8 \times 10^{-7} M$

the molar solubility of AgBr also is $8.8 \times 10^{-7} M$.

Calculate the solubility of copper(II) hydroxide, Cu(OH)2 in g/L. Ksp of Cu(OH)2 2.2×10^{-20}

		$Cu(OH)_2(s) =$	\Longrightarrow Cu ²⁺ (aq)	$+ 2OH^{-}(aq)$
	Initial (M):		0	0
	Change (M):	<u>-s</u>	+s	+2s
	Equilibrium (M):		S	2 <i>s</i>
		$K_{sp} = [Cu^{2}]$ $= (s)(2s)$	$[OH^{-}]^{2}$ $(a)^{2} = 4s^{3}$	
		2.2×10^{-20} $3 - 2.2 \times 10^{-20}$	$r^{0} = 4s^{3}$ $10^{-20} = 5.5$	× 10 ⁻²¹
olar	solubility(mol/L) (—	$s = \frac{4}{1.8 \times 10^{4}}$	$10^{-7} M$	× 10
	solubility of Cu(OH) ₂	= 1.8 x 10 ⁻⁷ x	97.57 g/l	Molar mass of Cu(OH)2
		$= 1.8 \times 10^{-5}$	g/L	

Μ

Predicting Precipitation Reactions

- We can predict whether a precipitate will form when we mix two solutions or add a soluble compound to a solution.
- We use Q, called the ion product, to represent the quantity obtained by substituting the initial concentrations of the ions into the Ksp expression.

Q < Ksp Unsaturated solution, no precipitation.

- Q = Ksp Saturated solution, no precipitation.
- Q > Ksp Supersaturated solution; precipitation occur.

Example

• If exactly 200 mL of 0.0040 M BaCl2 are added to exactly 600 mL of 0.0080 M of potassium sulfate. Will a precipitate form? Given that: $BaSO_4(s) \Longrightarrow Ba^{2+}(aq) + SO_4^{2-}(aq)$ $K_{sp} = 1.1 \times 10^{-10}$

 $K_2SO_4(aq) + BaCl_2(aq) → _2KCl(aq) + BaSO_4(s)$ ∴ $Ba^{_2+}(aq) + SO_4^{_2-}(aq) → BaSO_4(s)$

For BaCl2, M1.V1 = M2.V2 200 x 0.004 = M2 x 800 M2 = 0.001 M = molar solubility of BaCl2= molar solubility of Ba⁺²
For K2SO4, M1.V1 = M2.V2 600 x 0.008 = M2 x 800 M2 = 0.006 M = molar solubility of K2SO4 = molar solubility of SO4⁻²

$$Q = [Ba^{2+}]_0 [SO_4^{2-}]_0 = (1.0 \times 10^{-3})(6.0 \times 10^{-3})$$
$$= 6.0 \times 10^{-6}$$

• Q > Ksp, The solution is supersaturated because the value of Q indicates that the concentrations of the ions are too large. Thus, some of the BaSO4 will precipitate out of solution.

