Chapter 9

Part 1 General properties of Solution

Solution

• A solution is a homogeneous mixture of two or more substances.

• The substance present in a smaller amount is called the **solute**, whereas the substance present in a larger amount is called the **solvent**.

• **Dissolution** is the process of dissolving or forming a solution. When dissolution happens, the solute separates into ions or molecules, and each ion or molecule is surrounded by molecules of solvent.

Dissolution

Solution Interactions

Solvation

• The interactions between the solute particles and the solvent molecules is called solvation or hydration when the solvent is water).

> Particles of **solute** will dissolve <u>IF</u> it is <u>more</u> <u>attracted</u> to the **solvent** particles than *to itself*

Types of solution according state of matter

TABLE 13.	1 Types of S	Types of Solutions			
Solute	Solvent	State of Resulting Solution	Examples		
Gas	Gas	Gas	Air		
Gas	Liquid	Liquid	Soda water (CO ₂ in water)		
Gas	Solid	Solid	H_2 gas in palladium		
Liquid	Liquid	Liquid	Ethanol in water		
Solid	Liquid	Liquid	NaCl in water		
Solid	Solid	Solid	Brass (Cu/Zn), solder (Sn/Pb)		

Types of Solutions according their capacity

- Chemists also characterize solutions by their capacity to dissolve a solute.
- A solution that contains the maximum amount of a solute in a given solvent, at a specific temperature, is called a saturated solution.
- Before the saturation point is reached, the solution is said to be unsaturated; it contains less solute than it has the capacity to dissolve.
- A third type, a *supersaturated solution*, *contains more solute than is present in a saturated solution*.
- Supersaturated solutions are not very stable. In time, some of the solute will come out of a supersaturated solution as crystals. *The process in which dissolved solute comes out of solution and forms crystals* is called *crystallization* (the opposite process of dissolution).

A Molecular View of the Solution Process with enthalpy changes

- In liquids and solids, molecules are held together by intermolecular attractions. These forces also play a central role in the formation of solutions.
- In the formation of solutions, three types of interactions:
- solvent-solvent interaction
- solute-solute interaction
- solvent-solute interaction
- When a solvent is added to a solution, steps 1 and 2 are both endothermic because energy is required to overcome the intermolecular interactions in the solvent ($\Delta H_1 > 0$) and the solute ($\Delta H_2 > 0$). In contrast, energy is released in step 3, solute-solvent interaction ($\Delta H_3 < 0$).
- The overall enthalpy change in the formation of the solution (ΔH_{soln}) is the sum of the enthalpy changes in the three steps:

$$\Delta H_{\rm soln} = \Delta H_1 + \Delta H_2 + \Delta H_3$$

Exothermic solution formation

When ΔH_3 is larger in magnitude than the sum of ΔH_1 and ΔH_2 , the overall process is exothermic ($\Delta H_{soln} < 0$).

Endothermic solution formation

When ΔH_3 is lesser in magnitude than the sum of ΔH_1 and ΔH_2 , the overall process is endothermic ($\Delta H_{soln} > 0$).

(b) Endothermic solution formation

Solubility

- Solubility of the solute (g/L), is defined as the maximum amount of solute that will dissolve in a given quantity of solvent at a specific temperature.
- Chemists refer to substances as soluble, slightly soluble, sparingly, or insoluble in a qualitative sense.
- The saying **"like dissolves like"** helps in predicting the solubility of a substance in a solvent. What this expression means is that two substances with intermolecular forces of similar type and magnitude are likely to be soluble in each other.

Like dissolves like

weak bonds in the pure non-polar substances.

Like dissolves like

Acetic acid in water

dipole-dipole -

Like dissolves like

Dissociation in aqueous solution

- Solutions in which water is the dissolving medium are called **aqueous solutions.**
- **Dissociation:** is the process by which certain solutes release ions to the aqueous solution.
- These solutes are called **electrolytes** because they can conduct electricity.

Classification of compounds according dissociation

A- An electrolyte is a compound that releases ions and thus conducts an electric current when it is in an aqueous solution or melted. It has two types:

- 1. **Strong electrolyte** exist in solution completely (or nearly completely) as ions.
- 2. Weak electrolyte produce small concentrations of ions when they dissolve.
- Do not confuse the extent to which an electrolyte dissolves with whether it is a strong or weak electrolyte. (Weak electrolytes still fully dissolve).

B- Nonelectrolyte – a substance that does **not** form ions when it dissolves in water, and so aqueous solutions of nonelectrolytes *do not conduct electricity*.

TABLE 4.1 Classification of Solutes in Aqueous Solution

Strong Electrolyte	Weak Electrolyte	Nonelectrolyte
HC1	CH ₃ COOH	(NH ₂) ₂ CO (urea)
HNO ₃	HF	CH ₃ OH (methanol)
HC1O ₄	HNO ₂	C ₂ H ₅ OH (ethanol)
H ₂ SO ₄ *	NH ₃	C ₆ H ₁₂ O ₆ (glucose)
NaOH	H_2O^{\dagger}	C ₁₂ H ₂₂ O ₁₁ (sucrose)
Ba(OH) ₂		
Ionic compounds		

*H₂SO₄ has two ionizable H⁺ ions. [†]Pure water is an extremely weak electrolyte.

Chapter 9 part 2

Solution stoichiometry

Concentration Units

- Concentration is the amount of solute present in a given amount of solution.
- 1- The percent by mass (also called the percent by weight or the weight percent) is defined as percent by mass of solute = $\frac{\text{mass of solute}}{\text{mass of solute} + \text{mass of solvent}} \times 100\%$

 $=\frac{\text{mass of solute}}{\text{mass of soln}} \times 100\%$

2-The percent by volume

Volume Percent $\left(\frac{V}{V}\right) = \frac{Volume Solute}{Volume Solution} \times 100\%$

3-Weight by Volume percent

Weight /Volume Percent $\left(\frac{W}{V}\right) = \frac{Weight Solute, g}{Volume Soln m} \times 100\%$

4- Molality (m)

Molality has the units of mole per Kg (mol/Kg).

molality = $\frac{\text{moles of solute}}{\text{mass of solvent (kg)}}$

5- Molarity (M)

Molarity has the units of mole per liter (mol/L).

 $molarity = \frac{moles of solute}{liters of soln}$

• Molarity of dilution: M_1V_1 Before dilution = M_2V_2 After dilution $M_{(solution)}xV_{(solution)} = mass_{(solute)}/molar mass_{(solute)}$

6- $X_{\text{Solute}} = \underline{\text{Moles of solute}}_{\text{Total moles of solution}}$ For $X_{\text{Solvent}} = \underline{\text{Moles of solution}}_{\text{Total moles of solvent}}$ $X_{\text{Solvent}} = \underline{\text{Moles of solvent}}_{\text{Total moles of solution}}$ Where: $X_{\text{solute}} + X_{\text{Solvent}} = 1$ $X_{1} = \frac{n_{1}}{n_{1} + n_{2}} = \text{mole fraction of species 1}$ $X_{2} = \frac{n_{2}}{n_{1} + n_{2}} = \text{mole fraction of species 2}$ $X_{1} + X_{2} = 1$

 Calculate the molarity of each of the following solution: 6.57 g of methanol (CH3OH) in 1.50 x 10² mL of solution

 $molarity = \frac{moles \text{ of solute}}{\text{liters of soln}}$

Solution:

n (for methanol)= mass/molar mass = 6.57/32=0.205mol Molarity = $0.205/(1.5 \times 10^2 \times 10^{-3}) = 1.36875$ mol/litre

How many grams of potassium dichromate $(K_2Cr_2O_7)$ are present in a 250-mL solution whose concentration is 2.16 *M*? $molarity = \frac{moles of solute}{liters of soln}$ M (Molarity not molar mass) = n (solute)/V2.16 = n/0.25 $n=2.16 \ge 0.25 = 0.54$ moles Mass(solute) = n x molar mass Mass = 0.54 x 294.2 = 159 g• How many grams of NaOH are needed to prepare 500 ml of 0.2M aqueous solution? $n_{(NaOH)} = M_{(solution)} \times V_{(solution)} = mass_{(NaOH)} / molar mass_{(NaOH)}$ $0.2 \ge 500 \ge 10^{-3} = \max_{(NaOH)}/40$ $|\text{Mass}_{(\text{NaOH})} = 0.2 \text{ x } 500 \text{ x} 10^{-3} \text{ x } 40 = 4g$ So, take 4 g of NaOH and complete to 500 ml with water.

• Describe how you would prepare 5.00 x 10^2 mL of a 1.75 M H_2SO_4 solution, starting with an 8.61 M stock solution of H_2SO_4 .

This is dilution

 $M_1 x V_1$ (Before dilution) = $M_2 x V_2$ (After dilution)

$$(8.61 M)(V_i) = (1.75 M)(5.00 \times 10^2 mL)$$
$$V_i = \frac{(1.75 M)(5.00 \times 10^2 mL)}{8.61 M}$$
$$= 102 mL$$

So, take 102 ml of the stock solution and complete to 500 ml with water.

A 46.2-mL, 0.568 *M* calcium nitrate [Ca(NO₃)₂]solution is mixed with 80.5 mL of 1.396 *M* calcium nitrate solution. Calculate the concentration of the final solution. Assume the volumes are additive.

```
n1 = 0.568 \ge 0.0462 = 0.026 \mod
```

```
n2 = 1.396 \text{ x} 0.0805 = 0.112 \text{ mol}
```

```
n \text{ total} = n1 + n2 = 0.112 + 0.026 = 0.138 \text{ mol}
```

V total = 0.0462 + 0.0805 = 0.127 L

Molarity (final) = n total/V (total) = 0.138/0.127 = 1.087 M.

Water is added to 7.85 g of methanol to give a 100 ml solution whose density is 0.976 g/mL. (Or An aqueous solution of methanol is prepared with a concentration of 7.85% w/v). The molar mass of methanol is 32.04 g. Calculate:
Molarity, Molality , W/W %, W/V%, Mole fractions, Mass fractions

 $molarity = \frac{moles of solute}{liters of soln}$ • 1)Molarity n (methanol) = mass/molar mass = 7.85/32.04 = 0.245 mol Molarity = $0.245 / 100 \times 10^{-3} = 2.45 \text{ M}$ • 2) Molality mass of solvent (kg) n (methanol) = mass/molar mass = 7.85/32.04 = 0.245 mol mass(solution) = Volume (solution)x density (solution) $= 100 \ge 0.976 = 97.6 \text{ g}$ mass(solution) = mass solvent + mass of methanol Mass(solvent) = 97.6-7.85 = 89.75 g $Molality = 0.245/89.75 \text{ x}10^{-3} = 2.73 \text{ m}$

• 6) mass fractions Mass of a component **Mass Fraction** Total Mass of the Mixture mass(solution) = Volume (solution) x density (solution) $= 100 \ge 0.976 = 97.6$ Mass(water) = 97.6-7.85 = 89.75 g X_{m} (methanol) = m (methanol) / mass of solution = 7.85/97.6 = 0.08 $X_{m}(water) = 1 - X_{m}(methanol) 1 - 0.08 = 0.92$

• You have 2.45 *M* aqueous solution of methanol (CH₃OH). What is the w/v% of the solution? The molar mass of methanol is 32.04 g.

 $molarity = \frac{moles of solute}{liters of soln}$

2.45 M means 2.45 moles of methanol in 1 liter of solution Mass of methanol = $n \times molar = 2.45 \times 32.04 = 78.498 \text{ g}$

Weight /Volume Percent $\left(\frac{W}{V}\right) = \frac{Weight Solute, g}{Volume Soln, ml} \times 100\%$

• w/v of the solution = (78.498/1000)X100% = 7.85%

• A solution of 28.0 g of NH3 in 72.0 g of water. The density of the solution is 0.898 g/mL. Calculate: Molarity, Molality, W/W %, W/V%, Mole fractions, Mass fractions moles of solute • 1- Molality molality = mass of solvent (kg) $n NH_3 = mass / molar mass = 28 / 17 = 1.647 mol$ Molality = $1.647/72 \text{ x}10^{-3} = 22.875 \text{ m}$ • 2- Molarity moles of solute $n NH_3 = mass / molar mass = 28 / 17 = 1.647 mol$ molarity = liters of solu Mass of solution = 28+72 = 100gVolume of solution = $(mass/density)_{solution} = 100/0.898 = 111.36 \text{ ml}$ Molarity = $1.647/111.356 \times 10^{-3} = 14.8 \text{ M}$

percent by mass of solute = $\frac{\text{mass of solute}}{\text{mass of solute} + \text{mass of solvent}}$ • 3)W/W% (percent by mass) × 100% $(28/28+72) \ge 100\% = 28\%$ $= \frac{\text{mass of solute}}{100\%} \times 100\%$ mass of soln 4)W/V% (Weight by Volume percent) Weight /Volume Percent $\left(\frac{W}{V}\right) = \frac{Weight Solute, g}{Volume Soln, m} \times 100\%$ $W/V\% = (28/111.36 \text{ ml}) \times 100\%$ $= 25 \ 14 \%$ • 5) mole fractions $n_{H20} = 72/18 = 4 \text{ mol}$ $X_1 = \frac{n_1}{n_1 + n_2}$ = mole fraction of species 1 $n NH_3 = 28/17 = 1.647 mol$ $X_2 = \frac{n_2}{n_1 + n_2}$ = mole fraction of species 2 $X_{NH3} = 1.647/(1.647+4) = 0.291$ $X_1 + X_2 = 1$ $X_{H2O} = 1-0.291=0.709$

The concentrated sulfuric acid we use in the laboratory is 98.0% H_2SO_4 by mass. The density of the solution is 1.83 g/mL. Calculate: A) the molarity of the acid solution. B) how can you prepare 500 ml of 2M from the concentrated solution 100 g of solution contains $98g H_2SO_4$ solute molality = $\frac{\text{moles of solute}}{\text{mass of solvent (kg)}}$ $molarity = \frac{moles of solute}{liters of soln}$ $n H_2SO_4 = mass / molar mass = 98 / 98 = 1 mole$ Density of solution = (mass/volume) for solution V solution = 100/1.83 = 54.64 ml A) Molarity = $1/(54.64 \times 10^{-3}) = 18.3 \text{ M}$ All other concentrations also could be calculated as the previous examples(Try) Also, it can be used in preparation of diluted solutions B) M1 x V1 = M2 x V2 $18.3 \times V1 = 2 \times 500$ V1= 54.64 ml Take this volume and complete to 500 ml

with water

What is the concentration of a solution, in parts per million, if 0.02 gram of NaCl is dissolved in 1000.grams of solution?

 $Ppm(m/m) = \frac{1 \text{ mg solute}}{1 \text{ kg solution}}$ $= 0.02 \times 1000 / 1 = 20 \text{ ppm}$

• Calculate the conc. of 0.2 M Na⁺ in ppm.

0.2 M means 0.2 mol in 1 liter solution.

 $Mass(Na^+) = 0.2 \ge 23 = 4.6 g$

 $Ppm (m/v) = \frac{mass of solute (mg)}{volume of solution (L)}$

 $Ppm = 4.6 \text{ x} 1000 / 1 = 4.6 \text{ x} 10^3 ppm$

9- Normality

 $N = Molarity \times Valency$

N = M.a a (Valency or no. of equivalents) = Number

of H^+ or OH^- in acid- base reactions or electron transfer in redox reaction.

Formula	No. of equivalents (a)	
HCl	1	$H_2SO_4 + NaOH = NaHSO_4 + H$
H ₂ SO ₄	1HSO ₄ ⁻¹ 2SO ₄ ⁻²	$H_2SO_4 + 2NaOH = Na_2SO_4 + 2H_2O$
H ₃ PO ₄	1H ₂ PO ₄ - 2HPO ₄ - ² 3PO ₄ - ³	$H_3PO_4 + NaOH = NaH_2PO_4 + H_2O$
NaOH	1	$H_3PO_4 + 2NaOH = Na_2HPO_4 + 2H_2O$
Ca(OH) ₂	2	$H_3PO_4 + 3NaOH = Na_3PO_4 + 3H_2O$

• What is the normality of 1.4 M H₂SO₄ for complete reaction?

$$N = M.a$$
 $N = 1.4 \times 2 = 2.8 N$

• What is the normality of 6M H₃PO₄ for complete reaction?

$$N = 6 \ge 3 = 18$$
 N

• What is the molarity of 6N H₂SO₄ for complete reaction?

 $M = N / a \qquad M = 6 / 2 = 3M$

• What is the normality of 0.02 M KMnO4 in the following reaction?

 $K^{+1} + 7 - 2 + F^{2} - 2 + 8H^{+} - K^{+} + Mn^{2+} + Fe^{3+} + SO_4 + H_2O$

for each mol of FeSO¹/₄ 1mol of e⁻ is donated for each mol of KMnO₄ 5mol of e⁻ are absorbed (accepted)

N = M.a

• N=0.02 x 5=0.1 N