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PRELIMINARIES

OVERVIEW This chapter reviews the basic ideas you need to start calculus. The topics in-
clude the real number system, Cartesian coordinates in the plane, straight lines, parabolas,
circles, functions, and trigonometry. We also discuss the use of graphing calculators and
computer graphing software.

11 Real Numbers and the Real Line

This section reviews real numbers, inequalities, intervals, and absolute values.

Real Numbers

Much of calculus is based on properties of the real number system. Real numbers are
numbers that can be expressed as decimals, such as

3 = —

—3 = ~0.75000. .
L 033333
10

V2 =14142...

The dots ... in each case indicate that the sequence of decimal digits goes on forever.
Every conceivable decimal expansion represents a real number, although some numbers
have two representations. For instance, the infinite decimals .999 ... and 1.000... repre-
sent the same real number 1. A similar statement holds for any number with an infinite tail
of 9%s.

The real numbers can be represented geometrically as points on a number line called
the real line.
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The symbol R denotes either the real number system or, equivalently, the real line.

The properties of the real number system fall into three categories: algebraic proper-
ties, order properties, and completeness. The algebraic properties say that the real num-
bers can be added, subtracted, multiplied, and divided (except by 0) to produce more real
numbers under the usual rules of arithmetic. You can never divide by 0.
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The order properties of real numbers are given in Appendix 4. The following useful
rules can be derived from them, where the symbol = means “implies.”

Rules for Inequalities
If a, b, and c¢ are real numbers, then:

1. a<b=>a+c<b+ec
2. a<b=>a—-c<b-—-c
3. a<bandc >0 = ac < bc
4

a<bandc <0 = bc < ac
Special case:a < b = —b < —a
5. 4>0= L >0

1

6. If a and b are both positive or both negative, thena < b = 3 < %

Notice the rules for multiplying an inequality by a number. Multiplying by a positive num-
ber preserves the inequality; multiplying by a negative number reverses the inequality.
Also, reciprocation reverses the inequality for numbers of the same sign. For example,
2 <5but—2> —5and1/2 > 1/5.

The completeness property of the real number system is deeper and harder to define
precisely. However, the property is essential to the idea of a limit (Chapter 2). Roughly
speaking, it says that there are enough real numbers to “complete” the real number line, in
the sense that there are no “holes” or “gaps” in it. Many theorems of calculus would fail if
the real number system were not complete. The topic is best saved for a more advanced
course, but Appendix 4 hints about what is involved and how the real numbers are con-
structed.

We distinguish three special subsets of real numbers.

The natural numbers, namely 1, 2, 3,4, ...
The integers, namely 0, 1, £2, £3,...
3. The rational numbers, namely the numbers that can be expressed in the form of a

fraction m/n, where m and n are integers and n # 0. Examples are

1 4_—-4_ 4 200 _ 37
3 "9~ 9 — —gr 3 and S7T=77.

The rational numbers are precisely the real numbers with decimal expansions that are
either

(a) terminating (ending in an infinite string of zeros), for example,

3

i 0.75000... = 0.75 or
(b) eventually repeating (ending with a block of digits that repeats over and over), for
example
23 o The bar indicates the
== =2.090909... = 2.09 block of repeating

11

digits.
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A terminating decimal expansion is a special type of repeating decimal since the ending
zeros repeat.

The set of rational numbers has all the algebraic and order properties of the real num-
bers but lacks the completeness property. For example, there is no rational number whose
square is 2; there is a “hole” in the rational line where V/2 should be.

Real numbers that are not rational are called irrational numbers. They are character-
ized by having nonterminating and nonrepeating decimal expansions. Examples are

T, \/2, \3/5, and logjop 3. Since every decimal expansion represents a real number, it
should be clear that there are infinitely many irrational numbers. Both rational and irra-
tional numbers are found arbitrarily close to any point on the real line.

Set notation is very useful for specifying a particular subset of real numbers. A set is a
collection of objects, and these objects are the elements of the set. If S is a set, the notation
a € § means that a is an element of S, and a ¢ S means that a is not an element of S. If S
and T are sets, then SU T is their union and consists of all elements belonging either to S
or T (or to both S and 7). The intersection S M 7 consists of all elements belonging to both
S and 7. The empty set ) is the set that contains no elements. For example, the intersec-
tion of the rational numbers and the irrational numbers is the empty set.

Some sets can be described by /isting their elements in braces. For instance, the set 4
consisting of the natural numbers (or positive integers) less than 6 can be expressed as

4=1{1,2,3,4,5}.
The entire set of integers is written as
{0, £1, £2, £3,... }.

Another way to describe a set is to enclose in braces a rule that generates all the ele-
ments of the set. For instance, the set

A4 = {x|xisanintegerand 0 < x < 6}

is the set of positive integers less than 6.

Intervals

A subset of the real line is called an interval if it contains at least two numbers and con-
tains all the real numbers lying between any two of its elements. For example, the set of all
real numbers x such that x > 6 is an interval, as is the set of all x such that =2 = x = 5.
The set of all nonzero real numbers is not an interval; since 0 is absent, the set fails to con-
tain every real number between —1 and 1 (for example).

Geometrically, intervals correspond to rays and line segments on the real line, along
with the real line itself. Intervals of numbers corresponding to line segments are finite in-
tervals; intervals corresponding to rays and the real line are infinite intervals.

A finite interval is said to be closed if it contains both of its endpoints, half-open if it
contains one endpoint but not the other, and open if it contains neither endpoint. The end-
points are also called boundary points; they make up the interval’s boundary. The re-
maining points of the interval are interior points and together comprise the interval’s in-
terior. Infinite intervals are closed if they contain a finite endpoint, and open otherwise.
The entire real line R is an infinite interval that is both open and closed.

Solving Inequalities

The process of finding the interval or intervals of numbers that satisfy an inequality in x is
called solving the inequality.
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TABLE 1.1 Types of intervals
Notation Set description Type Picture
Finite: (a, b) {x|la <x < b} Open
a b
[a, b] {x|a = x = b} Closed
a b
[a, b) {x|a = x < b} Half-open
a b
(a, b] {x|a < x = b} Half-open
a b
Infinite: (a, 00) {x|x > a} Open
a
[a, 00) {x|x = a} Closed
a
(—00,b) {x|x < b} Open - o
(—00, b] {x|x = b} Closed <« .
(—00, 00) R (set of all real
numbers) Both open <
and closed
EXAMPLE 1  Solve the following inequalities and show their solution sets on the real
line.
X 6
@ 2x—1<x+3 (b)—§<2x+1 (c)x_125
L L .
01 . x Solution
(a) (a) 2x — 1 <x+3
| | 2x<x+ 4 Add 1 to both sides.
X
_% 0 1 x <4 Subtract x from both sides.
(®) The solution set is the open interval (—oo, 4) (Figure 1.1a).
|
0 i 11 * (b) —§ <2+ 1
5
(©) —x < 6x + 3 Multiply both sides by 3.
FIGURE 1.1  Solution sets for the 0<7x+3 Addoxto bothsides.
inequalities in Example 1. -3 < 7x Subtract 3 from both sides.
—% <x Divide by 7.
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FIGURE 1.2  Absolute values give
distances between points on the number
line.
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The solution set is the open interval (—3/7, o0) (Figure 1.1b).

(¢) The inequality 6/(x — 1) = 5 can hold only if x > 1, because otherwise 6/(x — 1)
is undefined or negative. Therefore, (x — 1) is positive and the inequality will be pre-
served if we multiply both sides by (x — 1), and we have

6
x—1 =5
6=5x—5 Multiply both sides by (x — 1).
11 = 5x Add 5 to both sides.
% = X. ()1-,\'5%4
The solution set is the half-open interval (1, 11/5] (Figure 1.1c). [

Absolute Value

The absolute value of a number x, denoted by | x|, is defined by the formula

x| {x, x=0
x:
—X, x < 0.

EXAMPLE 2  Finding Absolute Values
13[=3, [0[=0, [=5]=~(=5)=5, [~|a]l = |dq] u
Geometrically, the absolute value of x is the distance from x to 0 on the real number
line. Since distances are always positive or 0, we see that|x| = 0 for every real number x,
and|x| = 0 ifand only if x = 0. Also,
|x — y| = the distance between x and y

on the real line (Figure 1.2).
Since the symbol Va always denotes the nonnegative square root of a, an alternate
definition of | x| is
x| = V2.

It is important to remember that Va? = |a|. Do not write Va? = a unless you already
know thata = 0.

The absolute value has the following properties. (You are asked to prove these proper-
ties in the exercises.)

Absolute Value Properties

1. |—a|=]aq| A number and its additive inverse or negative have
the same absolute value.
2. |ab| =|al||b] The absolute value of a product is the product of
the absolute values.
3 4 = M The absolute value of a quotient is the quotient
T b b of the absolute values.

4. |a + b| =la|+|b] The triangle inequality. The absolute value of the
sum of two numbers is less than or equal to the
sum of their absolute values.
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\
I< a

\
\
—0 ° L

—a 0 a

X
f—|x[—

FIGURE 1.3 |x| < a means x lies
between —a and a.

Note that |—a| # —|a|. For example, |=3| = 3, whereas —|3| = —3. If a and b
differ in sign, then |a + b| is less than |a| + |b|. In all other cases, |a + b| equals
|a| + |b|. Absolute value bars in expressions like | =3 + 5| work like parentheses: We do
the arithmetic inside before taking the absolute value.

EXAMPLE 3  Illustrating the Triangle Inequality

|[-3 +5|=]2|=2<|-3]+]5|=38
3+ 5]=18]=3]+15]
=3 = 5|=|-8[=8=|=3[+]-5] u

The inequality |x| < a says that the distance from x to 0 is less than the positive num-
ber a. This means that x must lie between —a and a, as we can see from Figure 1.3.

The following statements are all consequences of the definition of absolute value and
are often helpful when solving equations or inequalities involving absolute values.

Absolute Values and Intervals
If a is any positive number, then

5 |x|=a ifand only if x = +a

6. |x|<a ifandonly if —a <x <a
7. |x|>a ifandonly if x > a or x < —a
8 |x|=a ifandonlyif —a=x=a
9. |x|=a ifandonlyif x =a or x = —a

The symbol < is often used by mathematicians to denote the “if and only if” logical
relationship. It also means “implies and is implied by.”

EXAMPLE 4  Solving an Equation with Absolute Values
Solve the equation |2x — 3| = 7.

Solution By Property 5, 2x — 3 = +7, so there are two possibilities:

Equivalent equations

2x=3=7 2x—=3=-7 without absolute values
2x = 10 2x = —4 Solve as usual.
x=25 x=-2
The solutions of |2x — 3| = 7 are x = 5 and x = —2. |

EXAMPLE 5  Solving an Inequality Involving Absolute Values

s_2

<.

Solve the inequality
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(a)

(b)

FIGURE 1.4 The solution sets (a) [1, 2]
and (b) (—oo, 17U [2, ©) in Example 6.

1.1 Real Numbers and the Real Line 7

Solution ~ We have

’5—)% <1<:>—1<5—%<1 Property 6
2
-6 < -3 < —4 Subtract 5.
3>15, i '
=1 X Multiply by*z.
1 1 .
(:)g <x < 7 Take reciprocals.

Notice how the various rules for inequalities were used here. Multiplying by a negative
number reverses the inequality. So does taking reciprocals in an inequality in which both
sides are positive. The original inequality holds if and only if (1/3) < x < (1/2).
The solution set is the open interval (1/3, 1/2). ]

EXAMPLE 6 Solve the inequality and show the solution set on the real line:

(@ |[2x—3] =1 () |2x — 3| =1
Solution
(a) [2x — 3] =1
—-1=2x-3=1 Property 8
2=2x=4 Add 3.
l=x=2 Divide by 2.

The solution set is the closed interval [1, 2] (Figure 1.4a).

(b) |2x — 3| = 1
2x—3=1 or 2x — 3 =-1 Property 9
x—%zé or x—%S—% Divide by 2.
x=2 or x =1 Add %
The solution set is (—o0, 1] U [2, o0) (Figure 1.4b). [
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EXERCISES 1.1

Decimal Representations Inequalities
1. Express 1/9 as a repeating decimal, using a bar to indicate the re- 3. If 2 < x < 6, which of the following statements about x are nec-
peating digits. What are the decimal representations of 2/9? 3/9? essarily true, and which are not necessarily true?
Exercise 8/9? 9/9?
! ‘ a. 0<x<4 b. 0 <x-2<4
2. Express 1/11 as a repeating decimal, using a bar to indicate the 1<X<3 d 1 - 1 - 1
repeating digits. What are the decimal representations of 2/11? ¢ 2 e X T2
3/1179/117 11/11?
/ / / e.1<g<3 f. |x—4| <2
g —6<—x<2 h. 6 <—x<-2
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4. If =1 <y — 5 < 1, which of the following statements about y
are necessarily true, and which are not necessarily true?

a 4<y<6 b. 6<y<—4
c. y>4 d y<6
. 0<y—4<2 f.2<§<3
1 1 1
g.g<y<z h. |y—5|<1

In Exercises 512, solve the inequalities and show the solution sets on
the real line.

Quadratic Inequalities

Solve the inequalities in Exercises 35-42. Express the solution sets as
intervals or unions of intervals and show them on the real line. Use the
result Va? = |a|as appropriate.

35. x2 <2 36. 4 = x? 37.4<x*<9

1_ -,_1
38.9<x <4

41. x> —x <0

39. x — 1)>P<4 40, (x +3)?% <2

2.2 -x—-2=0

5. —2x >4 6. 8 —3x=5
7.5x —3=7—-3x 8. 32 —x)>23 +x)
1 7 6 —x 3x—4
9.2x—§27x+g 10. n 2
4 1 x+5 12 + 3x
1L 5(r=2) <3(x=6) 2. -5 2=y
Absolute Value
Solve the equations in Exercises 13—18.
13. |y| =3 14. |y —3|=7 15. |2t + 5| =4
_ _ag =2 Sl =
16. |1 — ¢ =1 17. |8 3s|—2 18. 3 1‘—1

Solve the inequalities in Exercises 19-34, expressing the solution sets
as intervals or unions of intervals. Also, show each solution set on the
real line.

19. |x| < 2 20. x| =2 21— 1]=3

2.1 +2|< 1 B3y -7 <4 24 |2+5<1
z 3 1 1

25.5—1’51 26.‘5z—1’sz 27 3¢ <2
2 1

2812 -4) <3 29|25 =4 30. [s + 3] = 5

3L 1—x[>1  32.|2-3x>5 33 %‘21
3r 2

4. |3 1‘>5

Theory and Examples

43. Do not fall into the trap |—a| = a. For what real numbers a is
this equation true? For what real numbers is it false?

44. Solve the equation [x — 1| =1 — x.

45. A proof of the triangle inequality Give the reason justifying
each of the numbered steps in the following proof of the triangle

inequality.
la + b|? = (a + b)? (1)
= a® + 2ab + b?
= a® + 2|al||b| + b? ()
= la|* + 2|a||o] + |b? ®)
= (la| + 0]
la + b] =]a| +[b] (4)

46. Prove that|ab| = |a||b|for any numbers a and b.
47. If | x| = 3 and x > —1/2, what can you say about x?
48. Graph the inequality |x| + |y| = 1.

49. Let f(x) = 2x + 1 and let § > 0 be any positive number. Prove
that |x — 1| < & implies |f(x) — f(1)| < 28. Here the nota-
tion f(a) means the value of the expression 2x + 1 when x = a.
This function notation is explained in Section 1.3.

50. Let f(x) = 2x + 3 and let € > 0 be any positive number. Prove
that | f(x) — f(0)] < e 5

tation f(a) means the value of the expression 2x + 3 when
x = a. (See Section 1.3.)

whenever |x — 0| < =. Here the no-

51. For any number a, prove that| —a| = |a|.

52. Let a be any positive number. Prove that |x| > a if and only if
x>aorx< —a.

53. a. If b is any nonzero real number, prove that|1/b| = 1/|b].

al _lal

bl [b]

54. Using mathematical induction (see Appendix 1), prove that
|a"| = |a|" for any number @ and positive integer 7.

b. Prove that

for any numbers ¢ and b # 0.
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1.2 Lines, Circles, and Parabolas 9

Lines, Circles, and Parabolas

y
brr——————- ®P(a, b
T ‘ (a, b)
Positive y-axis | }
\
- |
\
2 I
[
1F |
Negative x-axis Origin I
I DN / I I |_‘\ I
-3 -2 -1 0 1 \2 a3l
-1 . .
Positive x-axis
Negative y-axis oL
3k

FIGURE 1.5 Cartesian coordinates in the
plane are based on two perpendicular axes
intersecting at the origin.

1,3)

30 °
Second First
quadrant 2¢- quadrant
(=4 (+,+)
° 16 °
-2, 0. 0) 2D
(1,0
! . ! ! X
-2 -1 0 1 2
(=2,-D
® Third -t Fourth
quadrant quadrant
(=) (+.-)
20 °
1,-2)

FIGURE 1.6 Points labeled in the xy-
coordinate or Cartesian plane. The points
on the axes all have coordinate pairs but
are usually labeled with single real
numbers, (so (1, 0) on the x-axis is labeled
as 1). Notice the coordinate sign patterns

of the quadrants.

This section reviews coordinates, lines, distance, circles, and parabolas in the plane. The
notion of increment is also discussed.

Cartesian Coordinates in the Plane

In the previous section we identified the points on the line with real numbers by assigning
them coordinates. Points in the plane can be identified with ordered pairs of real numbers.
To begin, we draw two perpendicular coordinate lines that intersect at the 0-point of each
line. These lines are called coordinate axes in the plane. On the horizontal x-axis, num-
bers are denoted by x and increase to the right. On the vertical y-axis, numbers are denoted
by y and increase upward (Figure 1.5). Thus “upward” and “to the right” are positive direc-
tions, whereas “downward” and “to the left” are considered as negative. The origin O, also
labeled 0, of the coordinate system is the point in the plane where x and y are both zero.

If P is any point in the plane, it can be located by exactly one ordered pair of real num-
bers in the following way. Draw lines through P perpendicular to the two coordinate axes.
These lines intersect the axes at points with coordinates @ and b (Figure 1.5). The ordered
pair (a, b) is assigned to the point P and is called its coordinate pair. The first number a is
the x-coordinate (or abscissa) of P; the second number b is the y-coordinate (or
ordinate) of P. The x-coordinate of every point on the y-axis is 0. The y-coordinate of
every point on the x-axis is 0. The origin is the point (0, 0).

Starting with an ordered pair (a, b), we can reverse the process and arrive at a corre-
sponding point P in the plane. Often we identify P with the ordered pair and write P(a, b).
We sometimes also refer to “the point (a, b)” and it will be clear from the context when
(a, b) refers to a point in the plane and not to an open interval on the real line. Several
points labeled by their coordinates are shown in Figure 1.6.

This coordinate system is called the rectangular coordinate system or Cartesian
coordinate system (after the sixteenth century French mathematician René Descartes).
The coordinate axes of this coordinate or Cartesian plane divide the plane into four regions
called quadrants, numbered counterclockwise as shown in Figure 1.6.

The graph of an equation or inequality in the variables x and y is the set of all points
P(x, y) in the plane whose coordinates satisfy the equation or inequality. When we plot
data in the coordinate plane or graph formulas whose variables have different units of
measure, we do not need to use the same scale on the two axes. If we plot time vs. thrust
for a rocket motor, for example, there is no reason to place the mark that shows 1 sec on
the time axis the same distance from the origin as the mark that shows 1 1b on the thrust
axis.

Usually when we graph functions whose variables do not represent physical measure-
ments and when we draw figures in the coordinate plane to study their geometry and
trigonometry, we try to make the scales on the axes identical. A vertical unit of distance
then looks the same as a horizontal unit. As on a surveyor’s map or a scale drawing, line
segments that are supposed to have the same length will look as if they do and angles that
are supposed to be congruent will look congruent.

Computer displays and calculator displays are another matter. The vertical and hori-
zontal scales on machine-generated graphs usually differ, and there are corresponding dis-
tortions in distances, slopes, and angles. Circles may look like ellipses, rectangles may
look like squares, right angles may appear to be acute or obtuse, and so on. We discuss
these displays and distortions in greater detail in Section 1.7.
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y Increments and Straight Lines
C(5,6)
o When a particle moves from one point in the plane to another, the net changes in its coor-
sk B(%, 5) dinates are called increments. They are calculated by subtracting the coordinates of the
starting point from the coordinates of the ending point. If x changes from x; to x,, the in-
4r Ay = -5, crement in x is
3 Av=0 Ax = x, — x;.
2 —
Ay=38 EXAMPLE 1  In going from the point A(4, —3) to the point B(2, 5) the increments in the
L i i .
\ DG 1) x- and y-coordinates are
| | | | x
0 1 2 3\4 5 Ax =2 — 4= -2, Ay =5 —(-3) =8.
1+
From C(5, 6) to D(5, 1) the coordinate increments are
.
Ax=5-5=0, Ay=1-6=—5.
3k [ A4, -3)
2,-3 1
(2,-3) A\x _ See Figure 1.7. [

Given two points Pi(xy,y;) and Py(x,,y;) in the plane, we call the increments
FIGURE 1.7 Coordinate increments may ~ AX = x2 — x; and Ay = y» — y; the run and the rise, respectively, between P and P,.
be positive, negative, or zero (Example 1).  Two such points always determine a unique straight line (usually called simply a line)
passing through them both. We call the line P, P;.
Any nonvertical line in the plane has the property that the ratio
HisTORICAL BIOGRAPHY*

: Crise _ Ay »m =
René Descartes M=Tun = Ay X2 — X

(1596-1650)

has the same value for every choice of the two points P;(x1, y;) and Py(x, y2) on the line
(Figure 1.8). This is because the ratios of corresponding sides for similar triangles are equal.

DEFINITION Slope
The constant

_dise _ Ay _ -
Torun o Ay X2 T X

is the slope of the nonvertical line P, P;.

The slope tells us the direction (uphill, downhill) and steepness of a line. A line with
positive slope rises uphill to the right; one with negative slope falls downhill to the right
(Figure 1.9). The greater the absolute value of the slope, the more rapid the rise or fall. The

0 slope of a vertical line is undefined. Since the run Ax is zero for a vertical line, we cannot
evaluate the slope ratio m.

FIGURE 1.8 Triangles P, OP, and The direction and steepness of a line can also be measured with an angle. The angle

Py'Q'P,’ are similar, so the ratio of their of inclination of a line that crosses the x-axis is the smallest counterclockwise angle from

sides has the same value for any two points  the x-axis to the line (Figure 1.10). The inclination of a horizontal line is 0°. The inclina-
on the line. This common value is the line’s  tion of a vertical line is 90°. If ¢ (the Greek letter phi) is the inclination of a line, then
slope. 0=¢ < 180°.

To learn more about the historical figures and the development of the major elements and topics of calcu-
lus, visit www.aw-bc.com/thomas.

Copyright © 2005 Pearson Education, Inc., publishing as Pearson Addison-Wesley


http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html
bounce01.html?1_3_l

y
L,
6_
Py(0,5) Pi3.6)
Ly
4_
3 Py(4,2)
2 o
1_
L | | | | L | x
o[/1 2 3 4 5 6
i
/P3<o,—2>

FIGURE 1.9 The slope of L, is
Ay 6-(-2) 3

"TAxT 3-0 3
That is, y increases 8 units every time x
increases 3 units. The slope of L, is
o _2-5_-3
Ax 4-0 4 -
That is, y decreases 3 units every time x
increases 4 units.

A\ i K_\this
T X T > X
/ /
/ . / .
N _7 not this £ not this

FIGURE 1.10  Angles of inclination
are measured counterclockwise from the

X-axis.
y
P

2L

Ay
P

/ Ax
_Ay
m=3= tan ¢
X

FIGURE 1.11 The slope of a nonvertical
line is the tangent of its angle of
inclination.

1.2 Lines, Circles, and Parabolas 11

The relationship between the slope m of a nonvertical line and the line’s angle of incli-
nation ¢ is shown in Figure 1.11:

m = tan ¢.

Straight lines have relatively simple equations. All points on the vertical line through
the point @ on the x-axis have x-coordinates equal to a. Thus, x = a is an equation for the
vertical line. Similarly, y = b is an equation for the horizontal line meeting the y-axis at b.
(See Figure 1.12.)

We can write an equation for a nonvertical straight line L if we know its slope m and
the coordinates of one point P1(x, y;) on it. If P(x, y) is any other point on L, then we can
use the two points P; and P to compute the slope,

_y=n
X — X1

m

so that

y =y =mlx — x;) or y =y + mx — xp).

The equation
y =y + mx— x)

is the point-slope equation of the line that passes through the point (x1, y;) and
has slope m.

EXAMPLE 2 Write an equation for the line through the point (2, 3) with slope —3/2.

Solution ~ We substitute x; = 2,y; = 3, and m = —3/2 into the point-slope equation
and obtain

_ 3 __3
y—3—5(x—2), or y = 2x+6.
When x = 0,y = 6 so the line intersects the y-axisat y = 6. [

EXAMPLE 3 A Line Through Two Points
Write an equation for the line through (=2, —1) and (3, 4).

Solution  The line’s slope is

_-l=-4_=5_,
mT -3 =5 &

We can use this slope with either of the two given points in the point-slope equation:

With (x15y1)=(_2’_1) With (xlay1)=(3a 4)
y=—1+1-(x—(-2)) y=4+1-(x—23)
y=-1l+x+2 y=4+x—-3
y=x+1 —_— /y=x+1

Same result
Either way, y = x + 1 is an equation for the line (Figure 1.13). ]
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y
Along this line,
o x=2
5 —
4+ Along this line,
=3
3+ [ Y
(2,3)
2 -
1 —
| [ x
0 1 3 4

FIGURE 1.12 The standard equations
for the vertical and horizontal lines

through (2,

3)arex = 2and y = 3.

=2 0 1 2 3
1k

(=2,-1)

FIGURE 1.13 The line in Example 3.
y
™
L
X
0 a

FIGURE 1.14 Line L has x-intercept a
and y-intercept b.

The y-coordinate of the point where a nonvertical line intersects the y-axis is
called the y-intercept of the line. Similarly, the x-intercept of a nonhorizontal line is the
x-coordinate of the point where it crosses the x-axis (Figure 1.14). A line with slope m and
y-intercept b passes through the point (0, b), so it has equation

y=>b+ m(x — 0), or, more simply, y =mx + b.

The equation
y=mx +b

is called the slope-intercept equation of the line with slope m and y-intercept b.

Lines with equations of the form y = mx have y-intercept 0 and so pass through the ori-
gin. Equations of lines are called linear equations.

The equation
Ax + By = C (4 and B not both 0)

is called the general linear equation in x and y because its graph always represents a line
and every line has an equation in this form (including lines with undefined slope).

EXAMPLE 4
Find the slope and y-intercept of the line 8x + 5y = 20.

Finding the Slope and y-Intercept

Solution  Solve the equation for y to put it in slope-intercept form:
8 + 5y =120
5y = =8 + 20
y = —%x + 4.
The slope is m = —8/5. The y-intercept is b = 4. ]

Parallel and Perpendicular Lines

Lines that are parallel have equal angles of inclination, so they have the same slope (if they
are not vertical). Conversely, lines with equal slopes have equal angles of inclination and
so are parallel.

If two nonvertical lines L; and L, are perpendicular, their slopes m; and m; satisfy

mymy = —1, so each slope is the negative reciprocal of the other:
_ 1 _ 1
m= "y M = "m -

To see this, notice by inspecting similar triangles in Figure 1.15 that m; = a/h, and
my = —h/a.Hence, mymy = (a/h)(—h/a) = —1.

Copyright © 2005 Pearson Education, Inc., publishing as Pearson Addison-Wesley


http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html

y
L, Ly
C
|
Slope m; :/‘1’1 Slope m,
|
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FIGURE 1.15 AADC is similar to
ACDB. Hence ¢ is also the upper angle
in ACDB. From the sides of ACDB, we
read tan ¢y = a/h.

P(x,y)

x—h2+-kb>=a®

0

FIGURE 1.17 A circle of radius « in the
xy-plane, with center at (A, k).
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Distance and Circles in the Plane

The distance between points in the plane is calculated with a formula that comes from the
Pythagorean theorem (Figure 1.16).

X This distance is

d=N\/|x=x + [y~
2L =V @ 20
|92 =il
P(x,,y
NIRCED o)
|2, — x|
1 | X
0 X Xy

FIGURE 1.16 To calculate the distance
between P(x1, 1) and Q(xz, y2), apply the
Pythagorean theorem to triangle PCQ.

Distance Formula for Points in the Plane
The distance between P(xy, y1) and Q(x3, ;) is

d="V(Ax) + (A2 = Vi, — x1)* + (n — »)%

EXAMPLE 5  (Calculating Distance

(a) The distance between P(—1, 2) and O(3, 4) is
VB - ()P + 4 -22=V@)?+ (22= V2= V4-5=2V5.
(b) The distance from the origin to P(x, y) is
\/(X_0)2+(y—0)2=\/x2+y2. m

By definition, a circle of radius a is the set of all points P(x, y) whose distance from
some center C(h, k) equals a (Figure 1.17). From the distance formula, P lies on the circle
if and only if

\/(x—h)2+ (v — k)? =a,

SO

x—m*+ (- k>=d% (1)

Equation (1) is the standard equation of a circle with center (%, k) and radius a. The circle
of radius @ = 1 and centered at the origin is the unit circle with equation

x2+yr=1.
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EXAMPLE 6
(a) The standard equation for the circle of radius 2 centered at (3, 4) is
(x =3+ (y—4P=2"=4,
(b) The circle
x—12+(p+5°2=3
hash = 1,k= —5,anda = \V/3. The center is the point (4, k) = (1, —5) and the

radius isa = \/g u

If an equation for a circle is not in standard form, we can find the circle’s center and
radius by first converting the equation to standard form. The algebraic technique for doing
S0 is completing the square (see Appendix 9).

EXAMPLE 7  Finding a Circle’s Center and Radius

Find the center and radius of the circle

x2+y?+4x — 6y — 3 =0.

Solution ~ We convert the equation to standard form by completing the squares in x and y:

24+ P +4x—6y—3=0 Start with the given equation.
y Y g |
Y G : , .
. 2 2 _ sather terms. Move the constant
Exterior: (x = h)> + (v — k> > a’ "4 )+ (" -6y )=3 to the right-hand side.
2 2 o f e
On: (x — b2 + (y — k)? = a? 5 4 2 —6 Add the square of half the
x°+4x + 2 + (y -6y + DB = coefficient of x to each side of the
equation. Do the same for y. The
2 2 parenthetical expressions on the
r 3+ (4> + <_6> left-hand side are now perfect
2 2 squares.
(xX2+4x+4)+0%—6y+9) =3+4+9
(x + 2)2 I (y . 3)2 - 16 |writ04 cackf q,L,l-udmtiC as a squared
inear expression.
Interior: (x — h)> + (y — b)* < a? The center is (—2, 3) and the radius isa = 4. (]
0 }I; x The points (x, y) satisfying the inequality

(x —h)?+ (y — k)? < d?
FIGURE 1.18 The interior and exterior of
the circle (x — h)> + (y — k)* = 2. make up the interior region of the circle with center (4, k) and radius a (Figure 1.18). The

circle’s exterior consists of the points (x, y) satisfying

(x = h)?+ (y — k)? > d?.

Parabolas

The geometric definition and properties of general parabolas are reviewed in Section 10.1.
Here we look at parabolas arising as the graphs of equations of the form
y =ax*>+ bx + c.
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y = x?
(72’4) 4 (234)
39
39
L1 1 1,1
| | | X
-2 -1 0 2

FIGURE 1.19 The parabola

y = x* (Example 8).

~

symmetry
T

y=2x
_x?
Y=2
_x
Y= 10

\_

Axis of

Vertex at
origin

y=-x

FIGURE 1.20 Besides determining the

direction in which the parabola y = ax
opens, the number « is a scaling factor.
The parabola widens as a approaches zero

and narrows as |a| becomes large.

2
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EXAMPLE 8  The Parabola y = x2

Consider the equation y = x2. Some points whose coordinates satisfy this equation are
(0,0), (1, 1), (;, Z), (—=1,1),(2,4),and (=2, 4). These points (and all others satisfying

the equation) make up a smooth curve called a parabola (Figure 1.19). [

The graph of an equation of the form

y = ax?
is a parabola whose axis (axis of symmetry) is the y-axis. The parabola’s vertex (point
where the parabola and axis cross) lies at the origin. The parabola opens upward if a > 0
and downward if ¢ < 0. The larger the value of ||, the narrower the parabola (Figure
1.20).
Generally, the graph of y = ax? + bx + c is a shifted and scaled version of the
parabola y = x?. We discuss shifting and scaling of graphs in more detail in Section 1.5.

The Graphof y = ax> + bx+c¢, a# 0
The graph of the equation y = ax?> + bx + ¢,a # 0, is a parabola. The para-
bola opens upward if a > 0 and downward if @ < 0. The axis is the line

X =—5". (2)

The vertex of the parabola is the point where the axis and parabola intersect. Its
x-coordinate is x = —b/2a; its y-coordinate is found by substituting x = —b/2a
in the parabola’s equation.

Notice that if @ = 0, then we have y = bx + ¢ which is an equation for a line. The
axis, given by Equation (2), can be found by completing the square or by using a technique
we study in Section 4.1.

EXAMPLE 9  Graphing a Parabola
Graph the equation y = —%xz —x + 4.
Solution  Comparing the equation with y = ax? + bx + ¢ we see that
a= -1 b=-1 c=4
2) b

Since a < 0, the parabola opens downward. From Equation (2) the axis is the vertical line

po_b__ D

2a 2(-1/2)
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Vertex is (_ng y When x = —1, we have

9

y=—3(-1P = (- +4=1.

Point symmetric

with y-intercept Intercept at y = 4

The vertex is (—1, 9/2).
The x-intercepts are where y = 0:

XX +2x—-8=0
x=—2)x+4) =0
x =2, x=—4

Intercepts at
x=-4andx =2

We plot some points, sketch the axis, and use the direction of opening to complete the
FIGURE 1.21 The parabolain Example 9.  &raph in Figure 1.21. u
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EXERCISES 1.2

Increments and Distance

In Exercises 1-4, a particle moves from 4 to B in the coordinate plane.
Find the increments Ax and Ay in the particle’s coordinates. Also find
the distance from 4 to B.

1. 4(=3,2), B(—1,-2)
3. A(-3.2,-2), B(-8.1, -2)

2. A(—1,-2), B(-3,2)
4. A(\V2,4), B0, 1.5)

Describe the graphs of the equations in Exercises 5-8.

5 x24+y2=1
7. x>+ 2 =3

6. x>+ 2=
8. x> +y°=0

Slopes, Lines, and Intercepts

Plot the points in Exercises 9-12 and find the slope (if any) of the line
they determine. Also find the common slope (if any) of the lines per-
pendicular to line 4B.

9. A(—1,2),
11. A(2,3),

B(-2,—1)
B(—1,3)

10. A(-2,1),
12. A(—2,0),

B(2, -2)
B(-2,-2)

In Exercises 13—16, find an equation for (a) the vertical line and (b)
the horizontal line through the given point.

13. (—1,4/3)

15. (0, —V2)

14. (V2,-13)

16. (=, 0)

In Exercises 17-30, write an equation for each line described.

18. Passes through (2, —3) with slope 1/2

19. Passes through (3, 4) and (=2, 5)

20. Passes through (—8,0) and (—1, 3)

21. Has slope —5/4 and y-intercept 6

22. Has slope 1/2 and y-intercept —3

23. Passes through (—12, —9) and has slope 0

24. Passes through (1/3, 4), and has no slope

25. Has y-intercept 4 and x-intercept — 1

26. Has y-intercept —6 and x-intercept 2

27. Passes through (5, —1) and is parallel to the line 2x + 5y = 15

28. Passes through (—\6, 2) parallel to the line Vax + S5y = V3

29. Passes through (4,10) and is perpendicular to the line
6x — 3y =5

30. Passes through (0,1) and
8 — 13y =13

is perpendicular to the line

In Exercises 31-34, find the line’s x- and y-intercepts and use this in-
formation to graph the line.

31. 3x + 4y =12 32. x+2y=—4

33. Vaxr — V3y = Ve 34. 15x —y = =3

35. Is there anything special about the relationship between the lines
Ax + By = Cy and Bx — Ay = C, (4 # 0, B # 0)? Give rea-
sons for your answer.

36. Is there anything special about the relationship between the lines
Ax + By = Cy and Ax + By = C, (4 # 0, B # 0)? Give rea-
sons for your answer.

é |17. Passes through (—1, 1) with slope —1

Exercise
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Increments and Motion

37. A particle starts at A(—2, 3) and its coordinates change by incre-
ments Ax = 5, Ay = —6. Find its new position.

38. A particle starts at A4(6, 0) and its coordinates change by incre-
ments Ax = —6, Ay = 0. Find its new position.

39. The coordinates of a particle change by Ax = 5and Ay = 6 as it
moves from A(x, y) to B(3, —3). Find x and y.

40. A particle started at A(1, 0), circled the origin once counterclockwise,
and returned to A(1, 0). What were the net changes in its coordinates?

Circles

In Exercises 41-46, find an equation for the circle with the given
center C(h, k) and radius a. Then sketch the circle in the xy-plane. In-
clude the circle’s center in your sketch. Also, label the circle’s x- and
y-intercepts, if any, with their coordinate pairs.

41. C(0,2), a =2 42. C(-3,0), a=3
3. C(-1,5), a=V10  44.C(L1), a=V2
45. C(-V3,-2), a=2  46.C(3,1/2), a=5

1.2 Lines, Circles, and Parabolas 17

68. x>+ 12 —4x +2y >4, x>2
69. Write an inequality that describes the points that lie inside the cir-
cle with center (—2, 1) and radius V6.

70. Write an inequality that describes the points that lie outside the
circle with center (—4, 2) and radius 4.

71. Write a pair of inequalities that describe the points that lie inside
or on the circle with center (0, 0) and radius V2, and on or to the
right of the vertical line through (1, 0).

72. Write a pair of inequalities that describe the points that lie outside
the circle with center (0, 0) and radius 2, and inside the circle that
has center (1, 3) and passes through the origin.

Intersecting Lines, Circles, and Parabolas

In Exercises 73-80, graph the two equations and find the points in
which the graphs intersect.

Graph the circles whose equations are given in Exercises 47-52. Label
each circle’s center and intercepts (if any) with their coordinate pairs.

47. 2+ 2 +4x — 4y +4=0
48. x2+ 12— 8+ 4+ 16 =0
49. x>+ 32 -3y —4=0

50. x> + 2 — 4x — (9/4) = 0
51 x2 4+ 32 —dx + 4y =0

52. 2+ 2+ 2x =3

73. y=2x, x*+yr=1

T4 x+y=1, (x—1P+y*=1
75. y —x=1, y=x?

76. x +y =0, y=—(x— 1)
77,y =—x% y=2ur-1

78. y=%x2, y=(x—1)7?

79. X2+ 2 =1, (x—1P%+y*=1
80. x> +y* =1, x¥*+y=1

Applications

Parabolas

Graph the parabolas in Exercises 53—60. Label the vertex, axis, and
intercepts in each case.

53, y=x>—-2x-3
55. y = —x? + 4x
57. y=—x*—6x—5

54, y=x>+4x+3
56. y = —x>+4x — 5
58 y=2x>—x+3

59.y=lx2+x+4

__ 1,
> 60. y = 2~ +2x + 4

Inequalities

Describe the regions defined by the inequalities and pairs of inequali-
ties in Exercises 61-68.

61. x> +y2>7

62. x> +1y2 <5

63. (x — 1) +y2=4

64. X2+ (y—2) =4

65. x> +1y2>1, x*+y?<4

66. x> +1y2 =4, (x+272+y’=4

67. X2+ 2+ 6y <0, y> -3

81. Insulation By measuring slopes in the accompanying figure, esti-
mate the temperature change in degrees per inch for (a) the gypsum
wallboard; (b) the fiberglass insulation; (c) the wood sheathing.

80° I T

‘ bneﬁljﬁ::

70° L T pS Iboar

60° o

.
= O
b
&
N&
%
=
2

wee tu

50°

790 I

235 >
@ .
o

40°

Temperature (°F)

30°

20°

10° <

0°

0 1 2 3 4 5 6 7

Distance through wall (inches)

The temperature changes in the wall in Exercises 81 and 82.
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82.

83.

84.

85.

86.

Insulation  According to the figure in Exercise 81, which of the
materials is the best insulator? the poorest? Explain.

Pressure under water The pressure p experienced by a diver
under water is related to the diver’s depth d by an equation of the
form p = kd + 1 (k a constant). At the surface, the pressure is 1
atmosphere. The pressure at 100 meters is about 10.94 atmos-
pheres. Find the pressure at 50 meters.

Reflected light A ray of light comes in along the line
x + y = 1 from the second quadrant and reflects off the x-axis
(see the accompanying figure). The angle of incidence is equal to
the angle of reflection. Write an equation for the line along which
the departing light travels.

x+y=1

‘ /

Angle of | Angle of
incidence | reflection

The path of the light ray in Exercise 84.
Angles of incidence and reflection are
measured from the perpendicular.

Fahrenheit vs. Celsius
equation

In the FC-plane, sketch the graph of the

_ (-
C=5(F =32

linking Fahrenheit and Celsius temperatures. On the same graph
sketch the line C = F. Is there a temperature at which a Celsius
thermometer gives the same numerical reading as a Fahrenheit
thermometer? If so, find it.

The Mt. Washington Cog Railway Civil engineers calculate
the slope of roadbed as the ratio of the distance it rises or falls to
the distance it runs horizontally. They call this ratio the grade of
the roadbed, usually written as a percentage. Along the coast,
commercial railroad grades are usually less than 2%. In the
mountains, they may go as high as 4%. Highway grades are usu-
ally less than 5%.

The steepest part of the Mt. Washington Cog Railway in New
Hampshire has an exceptional 37.1% grade. Along this part of the
track, the seats in the front of the car are 14 ft above those in the
rear. About how far apart are the front and rear rows of seats?

Theory and Examples

87.

By calculating the lengths of its sides, show that the triangle with
vertices at the points A(1, 2), B(5, 5), and C(4, —2) is isosceles
but not equilateral.

88.

89.

90.

91.

92.

93.

94.

9s.

Show that the triangle with vertices 4(0, 0), B(l, \/3>, and
C(2, 0) is equilateral.

Show that the points 4(2, —1), B(1, 3), and C(—3, 2) are vertices
of a square, and find the fourth vertex.

The rectangle shown here has sides parallel to the axes. It is three
times as long as it is wide, and its perimeter is 56 units. Find the
coordinates of the vertices 4, B, and C.

Y

A D@, 2)

Three different parallelograms have vertices at (—1, 1), (2, 0),
and (2, 3). Sketch them and find the coordinates of the fourth ver-
tex of each.

A 90° rotation counterclockwise about the origin takes (2, 0) to
(0, 2), and (0, 3) to (=3, 0), as shown in the accompanying fig-
ure. Where does it take each of the following points?

a. (4,1) b. (-2, -3) . (2,-5)

d‘ (X, 0) €. (05y) f’ (X, y)
g. What point is taken to (10, 3)?

y

» (0, 3)

(. 2)"\ @ 1)
[ )

2,0)

(-2,-3) 0\_/

[
2,-5)

For what value of £ is the line 2x + ky = 3 perpendicular to the
line 4x + y = 1? For what value of & are the lines parallel?

Find the line that passes through the point (1, 2) and through
the point of intersection of the two lines x + 2y = 3 and
2x — 3y = —1.

Midpoint of a line segment Show that the point with coordinates

x1t+x yitwy
2 7 2

is the midpoint of the line segment joining P(x;, y1) to Q(x2, y2).
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96. The distance from a point to a line We can find the distance Use these steps to find the distance from P to L in each of the fol-
from a point P(xg, yo) to a line L: Ax + By = C by taking the fol- lowing cases.
lowing steps (there is a somewhat faster method in Section 12.5): a. P(2,1), L:iy=x+2
1. Find an equation for the line M through P perpendicular to L. b. P(4,6), L:4x + 3y =12
2. Find the coordinates of the point Q in which M and L intersect. ¢. Pla,b), L:x=—1
3. Find the distance from P to Q. d. P(xo,y), L:Ax +By=C
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1.3 Functions and Their Graphs

X — f
Input Output

(domain) (range)

FIGURE 1.22 A diagram showing a
function as a kind of machine.

)

Functions are the major objects we deal with in calculus because they are key to describ-
ing the real world in mathematical terms. This section reviews the ideas of functions, their
graphs, and ways of representing them.

Functions; Domain and Range

The temperature at which water boils depends on the elevation above sea level (the boiling
point drops as you ascend). The interest paid on a cash investment depends on the length of
time the investment is held. The area of a circle depends on the radius of the circle. The dis-
tance an object travels from an initial location along a straight line path depends on its speed.

In each case, the value of one variable quantity, which we might call y, depends on the
value of another variable quantity, which we might call x. Since the value of y is com-
pletely determined by the value of x, we say that y is a function of x. Often the value of y is
given by a rule or formula that says how to calculate it from the variable x. For instance,
the equation 4 = 72 is a rule that calculates the area 4 of a circle from its radius 7.

In calculus we may want to refer to an unspecified function without having any partic-
ular formula in mind. A symbolic way to say “y is a function of x” is by writing

y=fkx)  (“yequals f of x”)

In this notation, the symbol f represents the function. The letter x, called the independent
variable, represents the input value of f, and y, the dependent variable, represents the
corresponding output value of f at x.

DEFINITION Function

A function from a set D to a set Y is a rule that assigns a unigue (single) element
f(x) e Y to each element x € D.

The set D of all possible input values is called the domain of the function. The set of
all values of f(x) as x varies throughout D is called the range of the function. The range
may not include every element in the set Y.

The domain and range of a function can be any sets of objects, but often in calculus
they are sets of real numbers. (In Chapters 13—16 many variables may be involved.)

Think of a function f as a kind of machine that produces an output value f(x) in its
range whenever we feed it an input value x from its domain (Figure 1.22). The function
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oy
f@) S

a

D = domain set Y = set containing
the range

FIGURE 1.23 A function from a set D to
a set Y assigns a unique element of Y to
each element in D.

keys on a calculator give an example of a function as a machine. For instance, the Vi key
on a calculator gives an output value (the square root) whenever you enter a nonnegative
number x and press the Vx key. The output value appearing in the display is usually a deci-
mal approximation to the square root of x. If you input a number x < 0, then the calculator
will indicate an error because x < 0 is not in the domain of the function and cannot be ac-
cepted as an input. The Vi key on a calculator is not the same as the exact mathematical
function f defined by f(x) = V/x because it is limited to decimal outputs and has only fi-
nitely many inputs.

A function can also be pictured as an arrow diagram (Figure 1.23). Each arrow
associates an element of the domain D to a unique or single element in the set Y. In Figure
1.23, the arrows indicate that f(a) is associated with a, f(x) is associated with x, and so on.

The domain of a function may be restricted by context. For example, the domain of
the area function given by 4 = 7r2 only allows the radius 7 to be positive. When we de-
fine a function y = f(x) with a formula and the domain is not stated explicitly or re-
stricted by context, the domain is assumed to be the largest set of real x-values for which
the formula gives real y-values, the so-called natural domain. If we want to restrict the
domain in some way, we must say so. The domain of y = x is the entire set of real num-
bers. To restrict the function to, say, positive values of x, we would write “y = x2, x > 0.”

Changing the domain to which we apply a formula usually changes the range as well.
The range of y = x? is [0, 00). The range of y = x2, x = 2, is the set of all numbers ob-
tained by squaring numbers greater than or equal to 2. In set notation, the range is
{x*|x = 2} or {y[y = 4} or [4, ).

When the range of a function is a set of real numbers, the function is said to be real-
valued. The domains and ranges of many real-valued functions of a real variable are inter-
vals or combinations of intervals. The intervals may be open, closed, or half open, and may
be finite or infinite.

EXAMPLE 1  Identifying Domain and Range

Verify the domains and ranges of these functions.

Function Domain (x) Range (y)

y=x (=00, 00) [0, 00)

y =1/ (—00,0)U (0, o0) (—00,0)U (0, o0)
y="Vx [0, c0) [0, o0)
y=V4-—x (=00,4] [0, 00)
y=VI1-—x? [—1,1] [0, 1]

Solution  The formula y = x? gives a real y-value for any real number x, so the domain
is (—00, 00). The range of y = x? is [0, 00) because the square of any real number is
nonnegative and every nonnegative number y is the square of its own square root,
y = (\/y)zfory = 0.

The formula y = 1/x gives a real y-value for every x except x = 0. We cannot divide
any number by zero. The range of y = 1/x, the set of reciprocals of all nonzero real num-
bers, is the set of all nonzero real numbers, since y = 1/(1/y).

The formula y = Vi gives a real y-value only if x = 0. The range of y = Vix is
[0, 00) because every nonnegative number is some number’s square root (namely, it is the
square root of its own square).
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In y = V4 — x, the quantity 4 — x cannot be negative. That is, 4 — x = 0, or
x = 4. The formula gives real y-values for all x = 4. The range of V4 — x is [0, 0),
the set of all nonnegative numbers.

The formula y = V1 — x? gives a real y-value for every x in the closed interval
from —1 to 1. Outside this domain, 1 — x? is negative and its square root is not a real
number. The values of 1 — x? vary from 0 to 1 on the given domain, and the square roots
of these values do the same. The range of V1 — x?is [0, 1]. [

Graphs of Functions

Another way to visualize a function is its graph. If f is a function with domain D, its graph
consists of the points in the Cartesian plane whose coordinates are the input-output pairs
for f. In set notation, the graph is

{(x, f(x)) | xeD}.

The graph of the function f(x) = x + 2 is the set of points with coordinates (x, y) for
which y = x + 2. Its graph is sketched in Figure 1.24.

The graph of a function f is a useful picture of its behavior. If (x, y) is a point on the
graph, then y = f(x) is the height of the graph above the point x. The height may be posi-
tive or negative, depending on the sign of f(x) (Figure 1.25).

y=x+2

20 *

FIGURE 1.24 The graph of FIGURE 1.25 If (x, y) lies on the graph of
f(x) = x + 2is the set of points (x, y) for £, then the value y = f(x) is the height of
which y has the value x + 2. the graph above the point x (or below x if

f(x) is negative).

EXAMPLE 2  Sketching a Graph

2

Graph the function y = x* over the interval [—2, 2].

Solution
1. Make a table of xy-pairs that satisfy the function rule, in this case the equation y = x2.
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2. Plot the points (x, y) whose 3. Draw a smooth curve through the
coordinates appear in the table. Use plotted points. Label the curve with
fractions when they are convenient its equation.
computationally.

y y
L2, L 024 4k
y=x
3 3
39
2k ¢ (Q’ Z) 2r
-LDe (L o@LD 1+
| | | | x | | | | x
2 -1 0 1 2 2 -1 0 1 2 m
| Computers and graphing calculators How do we know that the graph of y = x? doesn’t look like one of these curves?
graph functions in much this way—by
stringing together plotted points—and y y

the same question arises.

y =x2?

To find out, we could plot more points. But how would we then connect them? The
basic question still remains: How do we know for sure what the graph looks like
between the points we plot? The answer lies in calculus, as we will see in Chapter 4.
There we will use the derivative to find a curve’s shape between plotted points. Mean-
while we will have to settle for plotting points and connecting them as best we can.

EXAMPLE 3 Evaluating a Function from Its Graph

p The graph of a fruit fly population p is shown in Figure 1.26.
350 o (a) Find the populations after 20 and 45 days.
;(5)8 v (b) What is the (approximate) range of the population function over the time interval
200 / 0=1=50?
/
150 /
/

lgg / Solution

0 ] + (a) We see from Figure 1.26 that the point (20, 100) lies on the graph, so the value of the

10 20 30 40 50

_ population p at 20 is p(20) = 100. Likewise, p(45) is about 340.
Time (days)

(b) The range of the population function over 0 = ¢ = 50 is approximately [0, 345]. We
FIGURE 1.26 Graph of a fruit fly also observe that the population appears to get closer and closer to the value p = 350
population versus time (Example 3). as time advances. [
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Representing a Function Numerically

We have seen how a function may be represented algebraically by a formula (the area
function) and visually by a graph (Examples 2 and 3). Another way to represent a function
is numerically, through a table of values. Numerical representations are often used by en-
gineers and applied scientists. From an appropriate table of values, a graph of the function
can be obtained using the method illustrated in Example 2, possibly with the aid of a com-
puter. The graph of only the tabled points is called a scatterplot.

EXAMPLE 4 A Function Defined by a Table of Values

Musical notes are pressure waves in the air that can be recorded. The data in Table 1.2 give
recorded pressure displacement versus time in seconds of a musical note produced by a
tuning fork. The table provides a representation of the pressure function over time. If we
first make a scatterplot and then connect the data points (¢, p) from the table, we obtain the
graph shown in Figure 1.27.

TABLE 1.2 Tuning fork data P (pressure)
Time Pressure Time Pressure (1):3 i e Data
0.00091 —0.080 0.00362 0217 oor
0.00108 0.200 0.00379 0.480 0.2 RS / +se0)
0.00125 0.480 0.00398 0.681 o2 001 0.002 4003 0.004 O-OW% 0.007
0.00144 0.693 0.00416 0.810 oer
0.00162 0.816 0.00435 0.827
0.00180 0.844 0.00453 0.749 FIGURE 1.27 A smooth curve through the plotted points
0.00198 0.771 0.00471 0.581 gives a graph of the pressure function represented by
0.00216 0.603 0.00489 0.346 Table 1.2.
0.00234 0.368 0.00507 0.077
0.00253 0.099 0.00525 —0.164
0.00271 —0.141 0.00543 —0.320
0.00289 —0.309 0.00562 —0.354
0.00307 —0.348 0.00579 —0.248
0.00325 —0.248 0.00598 —0.035
0.00344 —0.041

The Vertical Line Test

Not every curve you draw is the graph of a function. A function f can have only one value
f(x) for each x in its domain, so no vertical line can intersect the graph of a function more
than once. Thus, a circle cannot be the graph of a function since some vertical lines inter-
sect the circle twice (Figure 1.28a). If @ is in the domain of a function f, then the vertical
line x = a will intersect the graph of f in the single point (a, f(a)).

The circle in Figure 1.28a, however, does contain the graphs of two functions of x; the
upper semicircle defined by the function f(x) = V1 — x? and the lower semicircle de-
fined by the function g(x) = —\/1 — x? (Figures 1.28b and 1.28c).
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~

FIGURE 1.28 (a) The circle is not the graph of a function; it fails the vertical line test.

(@ x>+y>=1

(¢) The lower semicircle is the graph of a function g(x) = =V 1 — x~.

flx) = V1 — x2.
y
y= |l
y=-x 3
=X
oL y
1_
T R [ I
-3 -2 -1 0 1 2 3

FIGURE 1.29 The absolute value
function has domain (—00, 00)

and range [0, 00).

FIGURE 1.30 To graph the
function y = f(x) shown here,
we apply different formulas to
different parts of its domain

(Example 5).

2

® y="V1-x ©y=-Vi-x

(b) The upper semicircle is the graph of a function
2

Piecewise-Defined Functions

Sometimes a function is described by using different formulas on different parts of its do-
main. One example is the absolute value function

X, x=0
lx[=19 _
X, x <0,

whose graph is given in Figure 1.29. Here are some other examples.

EXAMPLE 5  Graphing Piecewise-Defined Functions
The function

—X, x <0

flx) = x2, 0=x=1
1, x> 1

is defined on the entire real line but has values given by different formulas depending on
the position of x. The values of f are given by: y = —x when x < 0,y = x> when
0 =x=1,and y = 1 when x > 1. The function, however, is just one function whose
domain is the entire set of real numbers (Figure 1.30). [
EXAMPLE 6  The Greatest Integer Function

The function whose value at any number x is the greatest integer less than or equal to x is
called the greatest integer function or the integer floor function. It is denoted | x |, or,
in some books, [x] or [[x]] or int x. Figure 1.31 shows the graph. Observe that

|124] =2, |19] =1, |0]=0, |-12] = -2,
12] =2, 102 =0, [-03]=-1 |-2]=-2 -

Copyright © 2005 Pearson Education, Inc., publishing as Pearson Addison-Wesley


http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html
bounce01.html?1_7_l
bounce01.html?1_9_l

y
3k y=s
2_
=X
. y=[x]
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2 i 1 2 3
71_
2+

FIGURE 1.32 The graph of the
least integer function y = [x] lies
on or above the line y = x, so it
provides an integer ceiling for x
(Example 7).

y=fx)
an @0

0 1 2

FIGURE 1.33 The segment on the
left contains (0, 0) but not (1, 1).
The segment on the right contains
both of its endpoints (Example 8).
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y FIGURE 1.31 The graph of the
§—x  greatest integer function y = [x]

3 lies on or below the line y = x, so

oL it provides an integer floor for x

y=|x| (Example 6).

EXAMPLE 7  The Least Integer Function

The function whose value at any number x is the smallest integer greater than or equal to
x is called the least integer function or the integer ceiling function. It is denoted [x].
Figure 1.32 shows the graph. For positive values of x, this function might represent, for ex-
ample, the cost of parking x hours in a parking lot which charges $1 for each hour or part
of an hour. [

EXAMPLE 8  Writing Formulas for Piecewise-Defined Functions

Write a formula for the function y = f(x) whose graph consists of the two line segments
in Figure 1.33.

Solution ~ We find formulas for the segments from (0, 0) to (1, 1), and from (1, 0) to
(2, 1) and piece them together in the manner of Example 5.

Segment from (0, 0) to (1, 1) The line through (0, 0) and (1, 1) has slope
m = (1 —0)/(1 —0) = 1 and y-intercept b = 0. Its slope-intercept equation is y = x.
The segment from (0, 0) to (1, 1) that includes the point (0, 0) but not the point (1, 1) is the
graph of the function y = x restricted to the half-open interval 0 = x < 1, namely,

y =X, 0=x<1.

Segment from (1, 0) to (2, 1) The line through (1, 0) and (2, 1) has slope
m = (1 —0)/(2 — 1) = 1 and passes through the point (1, 0). The corresponding point-
slope equation for the line is

y=0+1(x—1), or y=x—1.

The segment from (1, 0) to (2, 1) that includes both endpoints is the graph of y = x — 1
restricted to the closed interval | = x = 2, namely,

y=x—1, l=x=2.
Piecewise formula Combining the formulas for the two pieces of the graph, we obtain

X, 0=x<1
f(x)_{x—l, 1l =x=2. ]
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EXERCISES 1.3

Functions

In Exercises 1-6, find the domain and range of each function.

Lf(x) =1+ x2 2. f(x) =1 —Vx

1
4. F(t) = ———
(t) 1+\ﬂ

1

-z 6.g(Z)=ﬁ
— Z

In Exercises 7 and 8, which of the graphs are graphs of functions of x,
and which are not? Give reasons for your answers.

7. a. y y

8. a. y y

b.
X
0
b.
X
0

9. Consider the function y = V/(1/x) — 1.
a. Can x be negative?
b. Canx = 0?
c. Can x be greater than 1?
d. What is the domain of the function?
10. Consider the function y = V2 — V.
a. Can x be negative?
b. Can Vx be greater than 27
c. What is the domain of the function?

12. Express the side length of a square as a function of the length d of
the square’s diagonal. Then express the area as a function of the
diagonal length.

13. Express the edge length of a cube as a function of the cube’s diag-
onal length d. Then express the surface area and volume of the
cube as a function of the diagonal length.

14. A point P in the first quadrant lies on the graph of the function
fx) = V. Express the coordinates of P as functions of the
slope of the line joining P to the origin.

Functions and Graphs

Find the domain and graph the functions in Exercises 15-20.

15. f(x) =5 — 2x
17. g(x) = \/|;| 18. g(x) = V—x
19. F(1) = t/]¢| 20. G(¢r) = 1/]¢]

21. Graph the following equations and explain why they are not
graphs of functions of x.

16. f(x) =1 — 2x — x?

b. y? = x2

a. |y|=x
22. Graph the following equations and explain why they are not

graphs of functions of x.

a. x|+ |y =1 b. [x +y|=1

Piecewise-Defined Functions
Graph the functions in Exercises 23-26.

Finding Formulas for Functions

11. Express the area and perimeter of an equilateral triangle as a
function of the triangle’s side length x.

B, 1205
wa=(o10 V205
LS
o= (2]

27. Find a formula for each function graphed.

a. y b. y

., n
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28. a. y b.
2
2,1
_MA‘ x
2 5

29. a. y b.
T 3 ! T X
o0
(—Zﬂl,—l) 3,-1)

30. a. b.
(T. 1)
1_
! A0 0
| | |
i L L]
| of T T 3roar
L s Y T Y
0 T T
2

31. a. Graph the functions f(x) = x/2 and g(x) = 1 + (4/x) to-

gether to identify the values of x for which

X 4
) > 1+ X
b. Confirm your findings in part (a) algebraically.
32. a. Graph the functions f(x) = 3/(x — 1)and g(x) = 2/(x + 1)
together to identify the values of x for which
3 2
x—1 x+1°

b. Confirm your findings in part (a) algebraically.

The Greatest and Least Integer Functions

33. For what values of x is
a. |x| =0? b. [x] =0?
34. What real numbers x satisfy the equation |x | = [x]?
35. Does [—x] = —| x| for all real x? Give reasons for your answer.
36. Graph the function
x=0
x <0

o=

Why is f(x) called the integer part of x?

1.3 Functions and Their Graphs 27

Theory and Examples

37. Abox with an open top is to be constructed from a rectangular piece
of cardboard with dimensions 14 in. by 22 in. by cutting out equal
squares of side x at each corner and then folding up the sides as in
the figure. Express the volume / of the box as a function of x.

1 22 1

)
|

38. The figure shown here shows a rectangle inscribed in an isosceles
right triangle whose hypotenuse is 2 units long.

a. Express the y-coordinate of P in terms of x. (You might start
by writing an equation for the line 4B.)

b. Express the area of the rectangle in terms of x.

y

P(x, ?)

39. A cone problem Begin with a circular piece of paper with a 4
in. radius as shown in part (a). Cut out a sector with an arc length
of x. Join the two edges of the remaining portion to form a cone
with radius 7 and height 4, as shown in part (b).

(b)

a. Explain why the circumference of the base of the cone is
8w — x.

b. Express the radius 7 as a function of x.
c. Express the height 4 as a function of x.

d. Express the volume V of the cone as a function of x.
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40. Industrial costs Dayton Power and Light, Inc., has a power
plant on the Miami River where the river is 800 ft wide. To lay a
new cable from the plant to a location in the city 2 mi downstream
on the opposite side costs $180 per foot across the river and $100
per foot along the land.

| 2 mi |
\%_x\ 0 Dayton

I
800 ft :

I

I

|

Power plant

(Not to scale)

a. Suppose that the cable goes from the plant to a point QO on the
opposite side that is x ft from the point P directly opposite the

41.

42.

plant. Write a function C(x) that gives the cost of laying the
cable in terms of the distance x.

b. Generate a table of values to determine if the least expensive

location for point Q is less than 2000 ft or greater than 2000 ft
from point P.

For a curve to be symmetric about the x-axis, the point (x, y) must
lie on the curve if and only if the point (x, —y) lies on the curve.
Explain why a curve that is symmetric about the x-axis is not the
graph of a function, unless the functionis y = 0.

A magic trick You may have heard of a magic trick that goes
like this: Take any number. Add 5. Double the result. Subtract 6.
Divide by 2. Subtract 2. Now tell me your answer, and I’ll tell you
what you started with. Pick a number and try it.

You can see what is going on if you let x be your original
number and follow the steps to make a formula f(x) for the num-
ber you end up with.
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Identifying Functions; Mathematical Models

There are a number of important types of functions frequently encountered in calculus. We
identify and briefly summarize them here.

Linear Functions A function of the form f(x) = mx + b, for constants m and b, is
called a linear function. Figure 1.34 shows an array of lines f(x) = mx where b = 0, so
these lines pass through the origin. Constant functions result when the slope m = 0
(Figure 1.35).

y
_3
2k Y=35
1 —
| | | | | | x
0 1 2
FIGURE 1.34 The collection of lines
v = mx has slope m and all lines pass FIGURE 1.35 A constant function
through the origin. has slope m = 0.
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Power Functions A function f(x) = x“, where a is a constant, is called a power func-
tion. There are several important cases to consider.

(a) a = n, apositive integer.

The graphs of f(x) = x", forn = 1, 2, 3, 4, 5, are displayed in Figure 1.36. These func-
tions are defined for all real values of x. Notice that as the power n gets larger, the curves
tend to flatten toward the x-axis on the interval (—1, 1), and also rise more steeply for
|x| > 1. Each curve passes through the point (1, 1) and through the origin.

y y=x Y oy—y? Y oy=3 Yy Yoy
1+ 1+ 1+ \1— 1+
1 | x | | | | | | | |
-1 /1o 1 ool 1 ° S0 1 0 F ool 1 F 7o 1 f
-1 Ak 1k 1k Ak

FIGURE 1.36 Graphs of f(x) = x",n = 1,2, 3,4, 5 defined for —co < x < 00,

b)a=-1 o a=-2.

The graphs of the functions f(x) = x~! = 1/x and g(x) = x 2 = 1/x? are shown in
Figure 1.37. Both functions are defined for all x # 0 (you can never divide by zero). The
graph of y = 1/x is the hyperbola xy = 1 which approaches the coordinate axes far from
the origin. The graph of y = 1/x? also approaches the coordinate axes.

Domain: x # 0
Range: y#0 0

Domain: x # 0
Range: y >0

() (b)

FIGURE 1.37 Graphs of the power functions f(x) = x¢ for part
(a)a = —1 and for part (b) a = —2.

(¢) a=

W

13
,g,i,and

N —

The functions f(x) = x'/? = Vx and g(x) =x'3 = Vx are the square root and cube
root functions, respectively. The domain of the square root function is [0, ©0), but the
cube root function is defined for all real x. Their graphs are displayed in Figure 1.38 along
with the graphs of y = x¥?and y = x%3. (Recall that x*/> = (x'/?)? and x** = (x'/?)?))
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y y
y= Vix
1+ y= \3/);
1 -
L X L X
0 1 V!
Domain: 0 = x < » Domain: —o < x < ®
Range: 0=y<o» Range: - <y<w®
y
y
y= 32
y=x2/3
1 1
! x ! X
0 1 0 1
Domain: 0 = x < Domain: —o0 < x < ®
Range: 0=y<» Range: 0=y<®
. ey 113 2
FIGURE 1.38 Graphs of the power functions f(x) = x“ fora = 232 andg.
Polynomials A function p is a polynomial if
px) = apx" + ap-ix" '+ - 4+ aix + ap
where n is a nonnegative integer and the numbers ay, a1, az, . . ., a, are real constants

(called the coefficients of the polynomial). All polynomials have domain (—00, 00). If
the leading coefficient @, # 0 and n > 0, then # is called the degree of the polynomial.
Linear functions with m # 0 are polynomials of degree 1. Polynomials of degree 2, usu-
ally written as p(x) = ax*> + bx + ¢, are called quadratic functions. Likewise, cubic
functions are polynomials p(x) = ax® + bx*> + cx + d of degree 3. Figure 1.39 shows
the graphs of three polynomials. You will learn how to graph polynomials in Chapter 4.

3 2
XX 1
y—3 5 2x+3
y
4r y
B Xy =8t - 14— 0x2 4 11k — 1 y=0 =2+ - 1)
16|
| 7
/N Y
| 1 2
[ 27
4 4 - | o~ | X
I\ 0 1 2
—6F
_8+
“10 |
-4 12 B
(a) (b) (©)

FIGURE 1.39 Graphs of three polynomial functions.
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Rational Functions A rational function is a quotient or ratio of two polynomials:

_ W
1 =55

where p and g are polynomials. The domain of a rational function is the set of all real x for
which ¢(x) # 0. For example, the function

_2x* -3
f@x) = Tx + 4

is a rational function with domain {x| x # —4/7}. Its graph is shown in Figure 1.40a
with the graphs of two other rational functions in Figures 1.40b and 1.40c.

y 2 —
4k y=5x +8x—3 6

4+

/ Liney=§
R E | I

1

o+
-4
=2 NOTTOSCALE
4 -6
-8
(a) (b) (©)

FIGURE 1.40 Graphs of three rational functions.

Algebraic Functions An algebraic function is a function constructed from polynomials
using algebraic operations (addition, subtraction, multiplication, division, and taking
roots). Rational functions are special cases of algebraic functions. Figure 1.41 displays the
graphs of three algebraic functions.

Trigonometric Functions We review trigonometric functions in Section 1.6. The graphs
of the sine and cosine functions are shown in Figure 1.42.

Exponential Functions Functions of the form f(x) = a*, where the base ¢ > 0 is a
positive constant and a # 1, are called exponential functions. All exponential functions
have domain (—00, 00) and range (0, 00). So an exponential function never assumes the
value 0. The graphs of some exponential functions are shown in Figure 1.43. The calculus
of exponential functions is studied in Chapter 7.

Logarithmic Functions These are the functions f(x) = log, x, where the base a # 1 is
a positive constant. They are the inverse functions of the exponential functions, and the
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y
— (] — 25
y=xBx— 4 y=x(1—-1x
B _ 3.2 123
i y=50"=1D
y
o\ 1
1 -
I X X I
-10 4 0 5
1k 7
i) .
3k
(a) (b) (©)

FIGURE 1.41 Graphs of three algebraic functions.
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FIGURE 1.42
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FIGURE 1.43

X

\

Graphs of exponential functions.

(b) f(x) = cos x

Graphs of the sine and cosine functions.

VAT VARV,

y
y=10""
12+
10
8 -
y=3" 6
4 -
y=27 2r
I I T — X
-1 =05 0 0.5 1

(b) y=27y=3"y=10""

calculus of these functions is studied in Chapter 7. Figure 1.44 shows the graphs of four
logarithmic functions with various bases. In each case the domain is (0, 00) and the range

is (—00, 00).

Transcendental Functions These are functions that are not algebraic. They include the
trigonometric, inverse trigonometric, exponential, and logarithmic functions, and many
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FIGURE 1.44 Graphs of four
logarithmic functions.

FIGURE 1.45 Graph of a catenary or
hanging cable. (The Latin word catena
means “chain.”)
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other functions as well (such as the hyperbolic functions studied in Chapter 7). An exam-
ple of a transcendental function is a catenary. Its graph takes the shape of a cable, like a
telephone line or TV cable, strung from one support to another and hanging freely under
its own weight (Figure 1.45).

EXAMPLE 1 Recognizing Functions

Identify each function given here as one of the types of functions we have discussed. Keep
in mind that some functions can fall into more than one category. For example, f(x) = x>
is both a power function and a polynomial of second degree.

@ f@)=1+x-32 ) gh) =T (@ he) =7

(A y(r) = sin(t - %)

Solution

@ fx)=1+x-— %xs is a polynomial of degree 5.
(b) g(x) = 7" is an exponential function with base 7. Notice that the variable x is the
exponent.

(¢) h(z) = z’is a power function. (The variable z is the base.)

(d) (1) = sin (t — %) is a trigonometric function. ]

Increasing Versus Decreasing Functions

If the graph of a function climbs or rises as you move from left to right, we say that the
function is increasing. If the graph descends or falls as you move from left to right, the
function is decreasing. We give formal definitions of increasing functions and decreasing
functions in Section 4.3. In that section, you will learn how to find the intervals over which
a function is increasing and the intervals where it is decreasing. Here are examples from
Figures 1.36, 1.37, and 1.38.

Function Where increasing Where decreasing

y = x? 0=x< —00 <x=0

y=x —00 < x < 00 Nowhere

y=1/x Nowhere -0 <x<0and0 < x <
y = 1/x? —00 <x<0 0<x<o

y = Vi 0=x< ™ Nowhere

y=x2/3 0=x< o0 -0 <x=0

Even Functions and 0dd Functions: Symmetry

The graphs of even and odd functions have characteristic symmetry properties.
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y
y=x2
(—X, y) N (X, y)
O X
(a)
y
y=x
(x, y)
O X

(=x,-y)

(b)

FIGURE 1.46 In part (a) the graph of

y = x? (an even function) is symmetric
about the y-axis. The graph of y = x3 (an
odd function) in part (b) is symmetric
about the origin.

DEFINITIONS  Even Function, 0dd Function
A function y = f(x) is an

even function of x if f(—x) = f(x),
odd function of x if f(—x) = —f(x),

for every x in the function’s domain.

The names even and odd come from powers of x. If y is an even power of x, as in
y = x%or y = x*, it is an even function of x (because (—x)*> = x? and (—x)* = x*). If y
is an odd power of x, as in y = x or y = x°, it is an odd function of x (because
(=x)!' = —xand (—x)} = —x3).

The graph of an even function is symmetric about the y-axis. Since f(—x) = f(x),a
point (x, y) lies on the graph if and only if the point (—x, y) lies on the graph (Figure
1.46a). A reflection across the y-axis leaves the graph unchanged.

The graph of an odd function is symmetric about the origin. Since f(—x) = —f(x),
a point (x, y) lies on the graph if and only if the point (—x, —y) lies on the graph (Figure
1.46b). Equivalently, a graph is symmetric about the origin if a rotation of 180° about the
origin leaves the graph unchanged. Notice that the definitions imply both x and —x must
be in the domain of f.

EXAMPLE 2  Recognizing Even and 0dd Functions

flx) = x2 Even function: (—x)? = x? for all x; symmetry about y-axis.

f(x) = x*>+ 1 Even function: (—x)*> + 1 = x? + 1 for all x; symmetry about
y-axis (Figure 1.47a).

y=x*+1

(@) (b)

FIGURE 1.47 (a) When we add the constant term 1 to the function

y = x2, the resulting function y = x> + 1 is still even and its graph is
still symmetric about the y-axis. (b) When we add the constant term 1 to
the function y = x, the resulting function y = x + 1 is no longer odd.
The symmetry about the origin is lost (Example 2).
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flx) =x 0Odd function: (—x) = —x for all x; symmetry about the origin.
f(x) =x+ 1 Notodd: f(—x) = —x + 1,but —f(x) = —x — 1.The two are
not equal.
Noteven: (—x) + 1 # x + 1 forall x # 0 (Figure 1.47b). ]

Mathematical Models

To help us better understand our world, we often describe a particular phenomenon mathe-
matically (by means of a function or an equation, for instance). Such a mathematical
model is an idealization of the real-world phenomenon and is seldom a completely accurate
representation. Although any model has its limitations, a good one can provide valuable re-
sults and conclusions. A model allows us to reach conclusions, as illustrated in Figure 1.48.

_ Simplification
Real-world Model
data
Verification Analysis
Predictions/ Mathematical
explanations I - conclusions
nterpretation

FIGURE 1.48 A flow of the modeling process
beginning with an examination of real-world data.

Most models simplify reality and can only approximate real-world behavior. One sim-
plifying relationship is proportionality.

DEFINITION  Proportionality

Two variables y and x are proportional (to one another) if one is always a con-
stant multiple of the other; that is, if

v = kx

for some nonzero constant k.

The definition means that the graph of y versus x lies along a straight line through the
origin. This graphical observation is useful in testing whether a given data collection rea-
sonably assumes a proportionality relationship. If a proportionality is reasonable, a plot of
one variable against the other should approximate a straight line through the origin.

EXAMPLE 3  Kepler's Third Law

_id A famous proportionality, postulated by the German astronomer Johannes Kepler in the
Video early seventeenth century, is his third law. If 7'is the period in days for a planet to complete
one full orbit around the sun, and R is the mean distance of the planet to the sun, then Kepler

postulated that 7 is proportional to R raised to the 3/2 power. That is, for some constant £,

T = kR32.
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Let’s compare his law to the data in Table 1.3 taken from the 7993 World Almanac.

TABLE 1.3 Orbital periods and mean distances of planets
from the sun

T R Mean distance
Planet Period (days) (millions of miles)
Mercury 88.0 36
Venus 224.7 67.25
Earth 365.3 93
Mars 687.0 141.75
Jupiter 4,331.8 483.80
Saturn 10,760.0 887.97
Uranus 30,684.0 1,764.50
Neptune 60,188.3 2,791.05
Pluto 90,466.8 3,653.90

The graphing principle in this example may be new to you. To plot 7 versus R>/ we
first calculate the value of R*? for each value in Table 1.3. For example,
3653.90%2 ~ 220,869.1 and 36*> = 216. The horizontal axis represents R*? (not R val-
ues) and we plot the ordered pairs (R¥2, T') in the coordinate system in Figure 1.49. This plot
of ordered pairs or scatterplot gives a graph of the period versus the mean distance to the 3/2
power. We observe that the scatterplot in the figure does lie approximately along a straight
line that projects through the origin. By picking two points that lie on that line we can eas-
ily estimate the slope, which is the constant of proportionality (in days per miles X107%).

90, 466.8 — 88

220869.1 — 216 ~ 0410

k = slope =

We estimate the model of Kepler’s third law to be 7 = 0.410R*? (which depends on our
choice of units). We need to be careful to point out that this is not a proof of Kepler’s third

T
— 90,000 -
A
e
= 60,000 -
2
&
30,000
G 1 1 1 1 1 L 3/2
0 80,000 160,000 240,000
(Miles X 107%)

FIGURE 1.49 Graph of Kepler’s third law as a
proportionality: 7 = 0.410R>? (Example 3).
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law. We cannot prove or verify a theorem by just looking at some examples. Nevertheless,
Figure 1.49 suggests that Kepler’s third law is reasonable. ]

The concept of proportionality is one way to test the reasonableness of a conjectured

relationship between two variables, as in Example 3. It can also provide the basis for an
empirical model which comes entirely from a table of collected data.
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EXERCISES 1.4

1.4 Identifying Functions; Mathematical Models 37

Recognizing Functions

In Exercises 1-4, identify each function as a constant function, linear
function, power function, polynomial (state its degree), rational func-
tion, algebraic function, trigonometric function, exponential function,
or logarithmic function. Remember that some functions can fall into
more than one category.

1. a. f(x) =7 — 3x b. g(x)=\5/;c
x> =1 .
c. h(x)=x2+1 d. r(x) =8
2.a. Fy=1t* -1t b. G(t) =5
c. Hz)=Vz+1 d. R(z) = V27
3. a. . b.y=x5/2—2x+1
x — 1
c. y=tanmwx d. y = logyx
4. a. y = log (l> bf(z)—i
. a. = 5 . =
! Vz+1
— ik - r,m
c. glx) =2 d. w = 5cos <2+ 6)

In Exercises 5 and 6, match each equation with its graph. Do not use a
graphing device, and give reasons for your answer.

5. a. y=x" b. y=x’ c. y=x
y
8
h
N | S/
f

Increasing and Decreasing Functions

Graph the functions in Exercises 7-18. What symmetries, if any, do
the graphs have? Specify the intervals over which the function is in-
creasing and the intervals where it is decreasing.

7.y=—x3 8. y=—7
X

9. y = —% 10. y = ﬁ

1. y = Vix| 12 y = V—x

13. y = x3/8 14. y = —4Vx

15. y = —x3? 16. y = (—x)*"?

17. y = (—x)*? 18. y = —x23

Even and 0dd Functions

In Exercises 19-30, say whether the function is even, odd, or neither.
Give reasons for your answer.

20. f(x) =x7°
22. f(x) = x%> +x

19. f(x) = 3
21, f(x) = x>+ 1

23. g(x) = x> +x 24, g(x) =x*+ 32— 1
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25. g(x) = 26. g(x) =

X
x> =1 x2 =1

1
t—1

29. h(t) =2t + 1

27. h(t) = 28. h(t) = 17|

30. h(r) = 2|1 + 1

Proportionality

In Exercises 31 and 32, assess whether the given data sets reasonably
support the stated proportionality assumption. Graph an appropriate
scatterplot for your investigation and, if the proportionality assump-
tion seems reasonable, estimate the constant of proportionality.

31. a. y is proportional to x

y 1

x 1591121 | 17.9 | 23.9 | 29.9 | 36.2 | 41.8 | 48.2

b. y is proportional to x!2

v |35 5|6|7|8
x| 3 6|9|12|15
32. a. y is proportional to 3*
v 5|15|45|135|405|1215|3645|10,935
slolil2lslal s e[ 7

b. y is proportional to In x
y| 2 | 4.8 | 5.3 | 6.5 | 8.0 | 10.5 | 14.4 | 15.0
x |20 | 5.0 | 6.0 | 9.0 | 14.0 | 35.0 | 120.0 | 150.0

The accompanying table shows the distance a car travels during
the time the driver is reacting before applying the brakes, and the
distance the car travels after the brakes are applied. The distances
(in feet) depend on the speed of the car (in miles per hour). Test
the reasonableness of the following proportionality assumptions
and estimate the constants of proportionality.

33.

a. reaction distance is proportional to speed.

b. braking distance is proportional to the square of the speed.

34. In October 2002, astronomers discovered a rocky, icy mini-planet
tentatively named “Quaoar” circling the sun far beyond Neptune.
The new planet is about 4 billion miles from Earth in an outer
fringe of the solar system known as the Kuiper Belt. Using
Kepler’s third law, estimate the time 7' it takes Quaoar to complete
one full orbit around the sun.

35. Spring elongation The response of a spring to various loads
must be modeled to design a vehicle such as a dump truck, utility
vehicle, or a luxury car that responds to road conditions in a de-
sired way. We conducted an experiment to measure the stretch y
of a spring in inches as a function of the number x of units of

mass placed on the spring.

X (number of

units of mass) 0 1 2 3 4 5
v (elongation ‘

in inches) 0 0.875 1 1.721 | 2.641 | 3.531 | 4.391
x (number of

units of mass) 6 7 8 9 10

v (elongation

in inches) 5241 16.120 |1 6.992 | 7.869 | 8.741

a. Make a scatterplot of the data to test the reasonableness of the
hypothesis that stretch y is proportional to the mass x.

b. Estimate the constant of proportionality from your graph
obtained in part (a).
c. Predict the elongation of the spring for 13 units of mass.

36. Ponderosa pines In the table, x represents the girth (distance

around) of a pine tree measured in inches (in.) at shoulder height;
y represents the board feet (bf) of lumber finally obtained.

x(in.)|17|19|20|23|25|28 |32|38 |39|41
y(bf)|19|25|32|57|71|113|123|252|259|294

Formulate and test the following two models: that usable board feet
is proportional to (a) the square of the girth and (b) the cube of the
girth. Does one model provide a better “explanation” than the other?

Speed (mph) | 20 | 25 | 30 | 35 | 40 | 45 | 50 55 60 65 70 75 80
Reaction

distance (ft) | 22 | 28 | 33 | 39 | 44 | 50 | 55 61 66 72 77 83 88
Braking

distance (ft) | 20 1 28 | 41 [ 53 1 72 1 93 | 118 | 149 | 182 | 221 [ 266 | 318 | 376
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Combining Functions; Shifting and Scaling Graphs

In this section we look at the main ways functions are combined or transformed to form
new functions.
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Sums, Differences, Products, and Quotients

Like numbers, functions can be added, subtracted, multiplied, and divided (except where
the denominator is zero) to produce new functions. If f and g are functions, then for every
x that belongs to the domains of both f and g (that is, for x e D(f) N D(g)), we define
functions f + g, f — g, and fg by the formulas

(f + 2x) = fx) + g(x).

(f = 9) = flx) — gx).

(fg)(x) = flx)g(x).

Notice that the + sign on the left-hand side of the first equation represents the operation of
addition of functions, whereas the + on the right-hand side of the equation means addition
of the real numbers f(x) and g(x).

At any point of D(f) M D(g) at which g(x) # 0, we can also define the function f/g
by the formula

<f )() fix; (where g(x) # 0).

Functions can also be multiplied by constants: If ¢ is a real number, then the function
cf is defined for all x in the domain of f by

(cf)x) = cf(x).
EXAMPLE 1 Combining Functions Algebraically

The functions defined by the formulas

flx) = Vx and g(x) = V1 —x,

have domains D(f) = [0, o©) and D(g) = (—00, 1]. The points common to these do-
mains are the points

[0, 0) N (=00, 1] = [0, 1].

The following table summarizes the formulas and domains for the various algebraic com-
binations of the two functions. We also write f - g for the product function fg.

Function Formula Domain

f+g (f + @) = Vx + V1 —x [0, 1] = D(f) N D(g)
f-g (f =) =Vx—V1I—x [0, 1]
g—f (g — ) = V1—x—Vax [0, 1]

f-g (f-8)x) = f(x)gx) = V(1 — x) [0, 1]
flg g(x) = g(();)) 1 f . [0, 1) (x = 1 excluded)
g/f %(x) = igx; I < . (0, 1] (x = 0 excluded)

The graph of the function f + g is obtained from the graphs of f and g by adding the
corresponding y-coordinates f(x) and g(x) at each point x e D(f) N D(g), as in Figure
1.50. The graphs of f + g and f - g from Example | are shown in Figure 1.51.
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8_
6l = (f+9W) ~_____

4
fla) + gla)
2
L L L L
x 0 T2 3 4] *
0 a 5 5 5 5

FIGURE 1.50 Graphical addition of two FIGURE 1.51 The domain of the function f + g is

functions. the intersection of the domains of f and g, the
interval [0, 1] on the x-axis where these domains
overlap. This interval is also the domain of the
function f - g (Example 1).

Composite Functions

Composition is another method for combining functions.

DEFINITION  Composition of Functions

If f and g are functions, the composite function f ° g (“f composed with g”) is
defined by

(f o g)x) = f(gx)).

The domain of f © g consists of the numbers x in the domain of g for which g(x)
lies in the domain of f.

The definition says that f o g can be formed when the range of g lies in the domain of
f.To find (f o g)(x), first find g(x) and second find f(g(x)). Figure 1.52 pictures f ° g
as a machine diagram and Figure 1.53 shows the composite as an arrow diagram.

feog
- f(g())
X
f
8
X— g 8 o — fs)
FIGURE 1.52 Two functions can be composed at
x whenever the value of one function at x lies in the 8
domain of the other. The composite is denoted by
feog. FIGURE 1.53  Arrow diagram for f ° g.
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EXAMPLE 2  Viewing a Function as a Composite

The function y = V1 — x? can be thought of as first calculating 1 — x? and then taking
the square root of the result. The function y is the composite of the function
g(x) = 1 — x? and the function f(x) = V/x. Notice that 1 — x2 cannot be negative. The
domain of the composite is[—1, 1]. [

To evaluate the composite function g o f (when defined), we reverse the order, find-
ing f(x) first and then g(f(x)). The domain of g ° f is the set of numbers x in the domain
of f such that f(x) lies in the domain of g.

The functions f o g and g o f are usually quite different.

EXAMPLE 3  Finding Formulas for Composites
If f(x) = \V/x and gx) =x + 1, find
@ (fegx) M (>N (@ (feoNx (@ (g°2x).

Solution

Composite Domain
@ (f°2)x) = flgx) = Vek) = Vx + 1 [—1, )
) (g° NHx) =g(fx) = f&x) + 1= Va+1 [0, 00)
© (f° HE) = f(fx) = V() = VVa = x4 [0, 00)

d (gegx) =glgx) =gx)+1=x+1)+1=x+2 (—00,00)

To see why the domain of f o gis[—1, 00), notice that g(x) = x + 1 is defined for all
real x but belongs to the domain of f only if x + 1 = 0, that is to say, whenx = —1. =

Notice that if f(x) = x? and g(x) = \/);, then (f o g)(x) = (\/);)2 = x. However,
the domain of f © gis [0, ©©), not (—00, 00).

Shifting a Graph of a Function

To shift the graph of a function y = f(x) straight up, add a positive constant to the right-
hand side of the formula y = f(x).

To shift the graph of a function y = f(x) straight down, add a negative constant to the
right-hand side of the formula y = f(x).

To shift the graph of y = f(x) to the left, add a positive constant to x. To shift the
graph of y = f(x) to the right, add a negative constant to x.

Shift Formulas

Vertical Shifts

y=flx) +k Shifts the graph of fup k units if £ > 0
Shifts it down | k| units if £ < 0

Horizontal Shifts

y = f(x + h) Shifts the graph of fleft h units if & > 0
Shifts it 7ight | h|units if & < 0

Copyright © 2005 Pearson Education, Inc., publishing as Pearson Addison-Wesley


http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html
bounce01.html?2_6_l

42

1 unit

Chapter 1: Preliminaries

y=x>42
y=x2+1
y=x
y=x>-2
A - X
-2 0 |\2
_l_l 2 units
N

FIGURE 1.54 To shift the graph
of f(x) = x% up (or down), we add
positive (or negative) constants to
the formula for f (Example 4a
and b).

EXAMPLE 4  Shifting a Graph

(a) Adding 1 to the right-hand side of the formula y = x? to get y = x> + 1 shifts the
graph up 1 unit (Figure 1.54).

(b) Adding —2 to the right-hand side of the formula y = x?to get y = x> — 2 shifts the
graph down 2 units (Figure 1.54).

(¢) Adding3toxiny = x>togety = (x + 3)?shifts the graph 3 units to the left (Figure
1.55).

(d) Adding —2 to xin y = |x|, and then adding —1 to the result, gives y = |x — 2| — 1
and shifts the graph 2 units to the right and 1 unit down (Figure 1.56).

Add a positive Add a negative
constant to x. constant to x. y
« y >
aL y=Il-2(-1
y=@x+3)? y=x2 [y=@x-2)02 L
B 1
1 | | \ | x
- -4 -2 L N 4
[ N | L
-3 o 1 2 *

FIGURE 1.55 To shift the graph of y = x? to the
left, we add a positive constant to x. To shift the ¥ = |x| 2 units to the right and 1 unit
graph to the right, we add a negative constant to x down (Example 4d).

(Example 4c). u

FIGURE 1.56 Shifting the graph of

Scaling and Reflecting a Graph of a Function

To scale the graph of a function y = f(x) is to stretch or compress it, vertically or hori-
zontally. This is accomplished by multiplying the function f, or the independent variable x,
by an appropriate constant c¢. Reflections across the coordinate axes are special cases
where c = —1.

Vertical and Horizontal Scaling and Reflecting Formulas

Forc > 1,

y = cf(x) Stretches the graph of f vertically by a factor of c.

y = % f(x) Compresses the graph of f vertically by a factor of c.

v = f(cx) Compresses the graph of f horizontally by a factor of c.
v = f(x/c) Stretches the graph of f horizontally by a factor of c.
Forc = —1,

y=—f(x) Reflects the graph of f across the x-axis.

y = f(—x) Reflects the graph of f across the y-axis.
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EXAMPLE 5  Scaling and Reflecting a Graph

(a) Vertical: Multiplying the right-hand side of y = Vi by 3to gety = 3\V/x stretches
the graph vertically by a factor of 3, whereas multiplying by 1/3 compresses the
graph by a factor of 3 (Figure 1.57).

(b) Horizontal: The graph of y = \V/3x is a horizontal compression of the graph of
y= Vi by a factor of 3, and y = Vx/3 is a horizontal stretching by a factor of 3
(Figure 1.58). Note that y = V3x = V3V so a horizontal compression may cor-
respond to a vertical stretching by a different scaling factor. Likewise, a horizontal
stretching may correspond to a vertical compression by a different scaling factor.

(¢) Reflection: The graph of y = —\V/x is a reflection of y = V/x across the x-axis, and

y = V —x is a reflection across the y-axis (Figure 1.59).

y e
4 —
3 y=V3x
) - compress w | | |
i y= vy 3 2 -1
»stretch
Iy y="Vux/3 L
| | | | |
= ol 1 2 3 4 * y=-Va
FIGURE 1.57 Vertically stretching and FIGURE 1.58 Horizontally stretching and FIGURE 1.59 Reflections of the graph
compressing the graph y = Vx by a compressing the graph y = V by a factor of ¥ = VXx across the coordinate axes
factor of 3 (Example Sa). 3 (Example 5b). (Example 5c). u

EXAMPLE 6  Combining Scalings and Reflections

Given the function f(x) = x* — 4x> + 10 (Figure 1.60a), find formulas to

(a) compress the graph horizontally by a factor of 2 followed by a reflection across the
y-axis (Figure 1.60b).

(b) compress the graph vertically by a factor of 2 followed by a reflection across the
x-axis (Figure 1.60c).

y y=16x*+32x3+10 Y Y
fo) =x*—4x3+10

20 20 - —_1,4 3_
1ok y =5 + 2x 5

U0 1 3 J4 7 20 7o 1 1o 72 3
10| -10
—10+

20 -20

() (b) (c)

FIGURE 1.60 (a) The original graph of /. (b) The horizontal compression of y = f(x) in part (a) by a factor of 2, followed
by a reflection across the y-axis. (c) The vertical compression of y = f(x) in part (a) by a factor of 2, followed by a reflection

across the x-axis (Example 6).
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Solution

(a) The formula is obtained by substituting —2x for x in the right-hand side of the equa-
tion for f

y = f(=2x) = (—2x)* — 4(—2x)* + 10
= l6x* + 32x° + 10.
(b) The formula is

y=—%f(x)=—%x4+2x3—5. [

Ellipses

Substituting cx for x in the standard equation for a circle of radius » centered at the origin
gives

cix? + y2 = 2. (1)

If 0 < ¢ < 1, the graph of Equation (1) horizontally stretches the circle; if ¢ > 1 the cir-
cle is compressed horizontally. In either case, the graph of Equation (1) is an ellipse
(Figure 1.61). Notice in Figure 1.61 that the y-intercepts of all three graphs are always —r
and r. In Figure 1.61b, the line segment joining the points (£/c, 0) is called the major
axis of the ellipse; the minor axis is the line segment joining (0, +r). The axes of the el-
lipse are reversed in Figure 1.61c: the major axis is the line segment joining the points
(0, +7) and the minor axis is the line segment joining the points (£7/c, 0). In both cases,
the major axis is the line segment having the longer length.

r 2 2_ .2
X +y r r 62x2+y2:r

A +yr=r

ol

,
’ N A -

(a) circle (b)ellipse, 0 <c < 1 (c) ellipse, ¢ > 1

FIGURE 1.61 Horizontal stretchings or compressions of a circle produce graphs of ellipses.

If we divide both sides of Equation (1) by 2, we obtain

2
X y
=+ =1. 2
2 (2)
where a = r/cand b = r.If a > b, the major axis is horizontal; if a < b, the major axis
is vertical. The center of the ellipse given by Equation (2) is the origin (Figure 1.62).
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y FIGURE21.62 Graph of the ellipse
2
x—z + ny = 1, a > b, where the major
a
axis is horizontal.

b

-b

Substituting x — & for x, and y — k for y, in Equation (2) results in

_h2 _k2
LSV o

Equation (3) is the standard equation of an ellipse with center at (4, k). The geometric
definition and properties of ellipses are reviewed in Section 10.1.
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Sums, Differences, Products, and Quotients

In Exercises 1 and 2, find the domains and ranges of f, g, f + g, and
f-g.

1. f(x) =x, gx)= V-1
2. fx) = Vx+1, gx) = Vx -1

In Exercises 3 and 4, find the domains and ranges of f, g, f/g, and g/f.
3. fx) =2, glx) =x*+1
4 fx)=1, gx) =1+ Vx

Composites of Functions

7. Ifu(x) = 4x — 5, v(x) = x?, and f(x) = 1/x, find formulas for
the following.

a. u(v(f(x))) b. u(f(v(x))
c. v(u(f(x) d. v(f ()
e. fu(v(x) f. fv(u(x))
8. If f(x) = \/);,g(x) = x/4, and h(x) = 4x — 8, find formulas|
for the following.

a. h(g(f(x)) b. h(f(g(x))

c. g(h(f(x)) d. g(f(h(x)))

e. f(g(h(x)) f. f(gx))

5. If f(x) = x + 5and g(x) = x> — 3, find the following.

a. f(g(0) b. g(£(0))
¢ flgx) d. g(f(x)
e. f(f(=3) f. g(g(2)
g f(fx) h. g(g(x))

6. If f(x) = x — land g(x) = 1/(x + 1), find the following.

a. f(g(1/2)) b. g(f(1/2))
c. fgt) d. g(f(x)
e. f(f(2) f. 2(2(2)
g f(/(x) h. g(g(x))

Let f(x) =x — 3, g) = \/);, h(x) = x*, and j(x) = 2x. Ex-
press each of the functions in Exercises 9 and 10 as a composite in-
volving one or more of £, ¢, h, and ;.

9. 2. y=Vx—3 b. v =2Vx
c. y=x1/4 d. y=4x
e. y=V(x-3) f. y=02x—6)}
10. a. y=2x—3 b. y=x*?
c. y=x° d y=x—-6
e. y=2Vx—3 f. y=Vx’-3
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11. Copy and complete the following table.

8(x) ) (f ° 9
a. x —7 Vi
b. x +2 3x
c. Vx =5 Vx? =5
x X
d. x—1 x—1
e. 1+ % X
f. % X
12. Copy and complete the following table.
8(x) J&) (f ° )
1
9
a |x|
9 x—1 X
b. X x+1
c. ? Vx |x|
d Vi ? |x|

In Exercises 13 and 14, (a) write a formula for f o g and g ° f and
find the (b) domain and (c) range of each.

13. f(x) = Vx + 1, gk =%
14. fx) =x% gx)=1-— Vi
Shifting Graphs

15. The accompanying figure shows the graph of y = —x? shifted to
two new positions. Write equations for the new graphs.

Position (a) y= —x2 Position (b)

y

16. The accompanying figure shows the graph of y = x? shifted to
two new positions. Write equations for the new graphs.

Position (a)

y=x

_5

companying figure.
ay=@x-1>-4
. y=(x+272+2

Position 2

(-2,2)
Position 3

|

Position (b)

17. Match the equations listed in parts (a)—(d) to the graphs in the ac-

b. y=(x—2P%+2
d y=x+3>-2
y

[ Position 1

T
—
L»
o
N
~—
=

24 -3 2/-10

(=3.-2)

(=2,3)

(b)

Position 4,

1,-4)

18. The accompanying figure shows the graph of y = —x? shifted to
four new positions. Write an equation for each new graph.

y
(1,4)

(a)

2.0

4./
o

()

(d)
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Exercise

Exercises 19-28 tell how many units and in what directions the graphs
of the given equations are to be shifted. Give an equation for the
shifted graph. Then sketch the original and shifted graphs together,
labeling each graph with its equation.

19. x> + y> =49 Down 3, left 2
20. x> +y? =125 Up3,left4
21. y = x> Left1, down 1

22. y =x** Right1, down |
23. y = Vx Left0.81

24. y = —Vx Right3

25. y=2x—7 Up7

26. y = %(x + 1) + 5 Down 5, right 1

27. y = 1/x Up1,right 1
28. y = 1/x* Left2, down 1

Graph the functions in Exercises 29-48.

29. y=Vx+4 30. y=V9 —x
31. y = |x — 2| 2. y=|1—-x| -1
B.oy=1+Ve—1 M. y=1-Vx
35. y = (x + 1) 36. y = (x — 8)%°
37. y=1—x?? 38. y +4=x2
39. y=Vi-1-1 40. y=(x +22 + 1
41.y=xl2 42.y:%—2
43.y=%+2 44.y=x_}_2
45.y:ﬁ 46.y:$—1
47.y=%+1 48.y=;2

X (x+ 1)

1.5 Combining Functions; Shifting and Scaling Graphs 47

50. The accompanying figure shows the graph of a function g(¢) with
domain [—4, 0] and range [—3, 0]. Find the domains and ranges
of the following functions, and sketch their graphs.

y
N 0 *
y=28® i
a. g(—1) b. —g(?)
c. g(r)+3 d. 1 —g()
e. g(—t+2) f. g(t —2)
g g(l—1) h. —g(t—4)

Vertical and Horizontal Scaling

Exercises 51-60 tell by what factor and direction the graphs of the
given functions are to be stretched or compressed. Give an equation
for the stretched or compressed graph.

49. The accompanying figure shows the graph of a function f(x) with
domain [0, 2] and range [0, 1]. Find the domains and ranges of the
following functions, and sketch their graphs.

y
1+ y = f(x)
0 2 *
a. f(x) +2 b. f(x) — 1
c. 2f(x) d. —f(x)
e. f(x+2) f. fx—1)
g f(—x) h, —f(x + 1)+ 1

51. y = x> — 1, stretched vertically by a factor of 3
52. y = x> — 1, compressed horizontally by a factor of 2
53.y=1+ %, compressed vertically by a factor of 2

X
54. y =1+ i, stretched horizontally by a factor of 3

X
55. y = Vx + 1, compressed horizontally by a factor of 4
56. y = Vx + 1, stretched vertically by a factor of 3
57. y = V4 — x2, stretched horizontally by a factor of 2
58. y = V4 — x2, compressed vertically by a factor of 3
59. y =1 — x3, compressed horizontally by a factor of 3
60. y =1 — x> stretched horizontally by a factor of 2
Graphing

In Exercises 61-68, graph each function, not by plotting points, but by
starting with the graph of one of the standard functions presented in
Figures 1.36-1.38, and applying an appropriate transformation.

6. y= —V2x + 1 62.y=4/1—%

63. y=(x—-17+2 64. y=(1 —x)* +2
S -2

65.y—2x 1 66. y x2+1

67. y = —Vhx 68. y = (—2x)%?

69. Graph the function y = |x — 1].

70. Graph the function y = \/|;|
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Ellipses

Exercises 71-76 give equations of ellipses. Put each equation in stan-
dard form and sketch the ellipse.

71.
73.
75.

76.

7.

78.

9x2 + 25y% = 225
32+ (y =272 =3
3x— 1P+ 2y +2°=6

3\ 1)’
6(x+§) +9( —5) = 54

Write an equation for the ellipse (x?/16) + (»%/9) = 1 shifted 4
units to the left and 3 units up. Sketch the ellipse and identify its
center and major axis.

Write an equation for the ellipse (x?/4) + (y2/25) = 1 shifted 3
units to the right and 2 units down. Sketch the ellipse and identify
its center and major axis.

72. 16x% + 7% = 112
74 (x + 12 +2y2 =4

Even and 0dd Functions

79.

80.

81.

82.

Assume that f is an even function, g is an odd function, and both
f and g are defined on the entire real line R. Which of the follow-
ing (where defined) are even? odd?

a. fg b. f/g c. g/f
d. [ =ff e. g8 =gg f.fog
g g°f h. fof igeg

Can a function be both even and odd? Give reasons for your
answer.

(Continuation of Example 1.) Graph the functions f(x) = Vi
and g(x) = V1 — x together with their (a) sum, (b) product,
(c) two differences, (d) two quotients.

Let f(x) = x — 7 and g(x) = x>. Graph f and g together with
fegandgo f.
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Trigonometric Functions

Circleof o>

FIGURE 1.63 The radian measure of
angle ACB is the length 6 of arc 4B on the
unit circle centered at C. The value of 0
can be found from any other circle,
however, as the ratio s/r. Thus s = r6 is
the length of arc on a circle of radius
when 0 is measured in radians.

Conversion Formulas

T

130 (~0.02) radians

1 degree =
Degrees to radians: multiply by 172;70
1 radian = 17%0 (~57) degrees

Radians to degrees: multiply by 1:%0

This section reviews the basic trigonometric functions. The trigonometric functions are
important because they are periodic, or repeating, and therefore model many naturally oc-
curring periodic processes.

Radian Measure

In navigation and astronomy, angles are measured in degrees, but in calculus it is best to
use units called radians because of the way they simplify later calculations.

The radian measure of the angle ACB at the center of the unit circle (Figure 1.63)
equals the length of the arc that ACB cuts from the unit circle. Figure 1.63 shows that
s = r0 is the length of arc cut from a circle of radius » when the subtending angle 6 pro-
ducing the arc is measured in radians.

Since the circumference of the circle is 277 and one complete revolution of a circle is
360°, the relation between radians and degrees is given by

7r radians = 180°.

For example, 45° in radian measure is

T _ T
45 180 4 rad,
and 7r/6 radians is
7 180 o
6T = 30°.

Figure 1.64 shows the angles of two common triangles in both measures.

An angle in the xy-plane is said to be in standard position if its vertex lies at the ori-
gin and its initial ray lies along the positive x-axis (Figure 1.65). Angles measured counter-
clockwise from the positive x-axis are assigned positive measures; angles measured clock-
wise are assigned negative measures.
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Degrees Radians
45
V2 | V2 1
45 90
1 1
y y
Terminal ray
- %T Initial ray
X
2 .
V3 2 V3 Positive Initial ray | jNegative
\ measure / Terminal measure
T T ! Ty,
60 90 3 2 )
1 1
FIGURE 1.64 The angles of two common FIGURE 1.65 Angles in standard position in the xy-plane.

triangles, in degrees and radians.

When angles are used to describe counterclockwise rotations, our measurements can
go arbitrarily far beyond 27 radians or 360°. Similarly, angles describing clockwise rota-
tions can have negative measures of all sizes (Figure 1.66).

~
~

[
\

N
#é’k/

~
<

x AR
A s N

FIGURE 1.66 Nonzero radian measures can be positive or
negative and can go beyond 277 .
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hypotenuse .
opposite
\o
adjacent
h

sin = PP csc O = P
hyp opp

adj hyp

cos f = m sec 6 = a_dj
&

tan 6 = ﬂ cot = '}
adj opp

FIGURE 1.67 Trigonometric
ratios of an acute angle.

P(x,y)

FIGURE 1.68 The trigonometric
functions of a general angle 0 are
defined in terms of x, y, and 7.

~

hypotenuse ¥ P(x, y)
r

\ 6

Y\ opposite

0 X
adjacent

FIGURE 1.69 The new and old
definitions agree for acute angles.

X

Angle Convention: Use Radians

From now on in this book it is assumed that all angles are measured in radians
unless degrees or some other unit is stated explicitly. When we talk about the an-
gle /3, we mean 7r/3 radians (which is 60°), not 7/3 degrees. When you do
calculus, keep your calculator in radian mode.

The Six Basic Trigonometric Functions

You are probably familiar with defining the trigonometric functions of an acute angle in
terms of the sides of a right triangle (Figure 1.67). We extend this definition to obtuse and
negative angles by first placing the angle in standard position in a circle of radius . We
then define the trigonometric functions in terms of the coordinates of the point P(x, y)
where the angle’s terminal ray intersects the circle (Figure 1.68).

sine: sinf = cosecant: cscf =

cosine: cosf = secant: secf =

I

tangent: tanf = cotangent: cotf =

IR RN <N

These extended definitions agree with the right-triangle definitions when the angle is
acute (Figure 1.69).
Notice also the following definitions, whenever the quotients are defined.

__ sinf 1
tan 0 = cosf cotf = tan
1 1
sec ) = cos 6 cscf = sin 0

As you can see, tan 6 and sec 6 are not defined if x = 0. This means they are not defined
if 0 is +7/2, £37/2,.... Similarly, cot and csc 0 are not defined for values of 6 for
which y = 0, namely 6 = 0, &7, £277,... .

The exact values of these trigonometric ratios for some angles can be read from the
triangles in Figure 1.64. For instance,

sinzzL sin£=l sin5 = ——
4 \/2 6 2 3 2

coszzL cosf—ﬁ cos -1
4 \[2 6 2 3 2

tan T = | tanz—L tan = = \/g

4 6 V3 3
The CAST rule (Figure 1.70) is useful for remembering when the basic trigonometric func-
tions are positive or negative. For instance, from the triangle in Figure 1.71, we see that
2w _ V3 2w _ 1 2w _
sin == = —=, cos 3= =~ 7, ‘[an3 = \6
Using a similar method we determined the values of sin 6, cos 6, and tan # shown in Table
1.4.
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T C
tan pos €OS pos

FIGURE 1.70 The CAST rule,
remembered by the statement “All
Students Take Calculus,” tells
which trigonometric functions are
positive in each quadrant.
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FIGURE 1.71 The triangle for
calculating the sine and cosine of 27/3
radians. The side lengths come from the
geometry of right triangles.

Most calculators and computers readily provide values of the trigonometric functions
for angles given in either radians or degrees.

cos 6 :L

TABLE 1.4 Values of sin 0, cos 0, and tan 6 for selected values of 6
Degrees —180 -—-135 —-90 -—-45 0 30 45 60 90 120 135 150 180 270 360
. _ =37 -—m =7 T m @ T 2m 37 Bl 37

0 (radians) T 4 2 n 0 6 4 3 ) 3 4 6 T 2 27
. -2 -\2 1 V2 V3 Vi V2 1

sin 0 o 5 1t v 5 3 . 5 7 2 010

cos 0 -1 ;\6 0 ﬁ 1 ﬁ ﬁ 1 0 _1 _7\/2 _7\/5 -1 0 1

2 2 2 2 2 2 2 2
tan 0 01 1 0 % 1 V3 V3 -1 _T\/g 0 0
EXAMPLE 1 Finding Trigonometric Function Values

Iftan = 3/2 and 0 < 6 < 7/2, find the five other trigonometric functions of 6.

Solution  From tan§ = 3/2, we construct the right triangle of height 3 (opposite) and
base 2 (adjacent) in Figure 1.72. The Pythagorean theorem gives the length of the hy-

potenuse, V4 + 9 = \V/13. From the triangle we write the values of the other five
trigonometric functions:

V13

sin0=i ecl = ——,

. Vi3 2
V13 2 3

scOZT, cotf =

V13’
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Periodicity and Graphs of the Trigonometric Functions

When an angle of measure 6 and an angle of measure # + 27 are in standard position,
their terminal rays coincide. The two angles therefore have the same trigonometric func-

~

tion values:

. cos(6 + 2m)

sec(0 + 2m)
Similarly, cos (6 — 27) = cos 6, sin (0§ — 27r) = sin 6, and so on. We describe this re-
peating behavior by saying that the six basic trigonometric functions are periodic.

tan(0 + 277) = tan 0
cot(f + 2m) = cotf

sin(0 + 27) = sinf
csc(f + 2m) = csc O

= cos 6

= sec O

FIGURE 1.72 The triangle for
calculating the trigonometric functions in

DEFINITION  Periodic Function
A function f(x) is periodic if there is a positive number p such that
f(x + p) = f(x) for every value of x. The smallest such value of p is the period

of f.

Example 1.

When we graph trigonometric functions in the coordinate plane, we usually denote the in-
dependent variable by x instead of 6. See Figure 1.73.

y
=tanx
Yy y
y = Cos x y =sinx ‘ /‘ /
| |
/. |
I I X
Lx | x 3w 0 T 3
¥ /& o ¥ pmo2m -k % ™ 3w 2w
| 2 2 | 2 2 2 2
| | | | I I
Domain: —o0 < x < o Domain: -0 < x < Domain: x #ig, =+ 377, L.
Range: -1=y=1 Range: -1=y=<1 Range: -0 <y <o
Period: 27 Period: 27 Paggz.. - y
(a) (b eriod: 7 ©
y y y
y =secx y =cCscx y = cotx
| ‘\A I lkj ‘\1 T
x 1 ! !
O 40| & 7 3 % 70| @ 4 3w dm ka0 m\F
ARA ARNA A
+ 3

Domain: #iﬂ, —Tr,...
S R

Range: y=-landy=1

Period: 27
(d

Range: y=-1
Period: 2w

Domain: x # 0, *, =271, .

andy =1

(e)

Domain: x # 0, +a, 27, ...

Range:
Period: =

—o <y <o

®

FIGURE 1.73  Graphs of the (a) cosine, (b) sine, (c) tangent, (d) secant, (e) cosecant, and (f) cotangent
functions using radian measure. The shading for each trigonometric function indicates its periodicity.
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. . . As we can see in Figure 1.73, the tangent and cotangent functions have period p = 7.
Periods of Trigonometric . . . . .
. The other four functions have period 27r. Periodic functions are important because many
Functions . R . L.
. behaviors studied in science are approximately periodic. A theorem from advanced calcu-
Period 77 : tan(x + 7) = tanx .. . . . . .
B lus says that every periodic function we want to use in mathematical modeling can be writ-
cot(x + ) = cotx . .. . . .. .
) ) ten as an algebraic combination of sines and cosines. We show how to do this in Section
Period 277:  sin(x + 27) = sinx 11.11
+2m) = R L - .
;:Cs((;c n 2:)) _ SC;)CS;C The symmetries in the graphs in Figure 1.73 reveal that the cosine and secant func-
cse(x + 2m) = oscx tions are even and the other four functions are odd:
Even Odd
cos(—x) = cosx sin(—x) = —sinx
sec(—x) = secx tan(—x) = —tanx
csc(—x) = —cscx
cot(—x) = —cotx
Y Identities
P(cos 0, sin 0) 2py2=1 The coordinates of any point P(x, y) in the plane can be expressed in terms of the point’s
distance from the origin and the angle that ray OP makes with the positive x-axis (Figure
V. , 1.69). Since x/r = cos 6 and y/r = sin 0, we have
sin 6 <
[ \ X =rcos0, y = rsinf.
X
|cos 6] 1 When » = 1 we can apply the Pythagorean theorem to the reference right triangle in
Figure 1.74 and obtain the equation

cos’f + sin’ 0 = 1. (1)
FIGURE 1.74 The reference

triangle for a general angle 6.

This equation, true for all values of 0, is the most frequently used identity in trigonometry.
Dividing this identity in turn by cos? @ and sin® # gives

1 + tan’ 0 = sec? 0.

1 + cot? § = csc? 6.

The following formulas hold for all angles 4 and B (Exercises 53 and 54).

Addition Formulas

cos(4 + B) = cosAcosB — sinA4 sinB

2
sin(4 + B) = sinA cos B + cos A sin B @
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There are similar formulas for cos(4 — B) and sin(4 — B) (Exercises 35 and 36).
All the trigonometric identities needed in this book derive from Equations (1) and (2). For
example, substituting 6 for both 4 and B in the addition formulas gives

Double-Angle Formulas

cos 20 = cos? 6 — sin’ 0
(3)

sin 260 = 2 sin 6 cos 6

Additional formulas come from combining the equations
cos’ 6 + sin’6 = 1, cos’f — sin®6 = cos 26.

We add the two equations to get 2 cos’6 = 1 + cos 26 and subtract the second from the
first to get 2 sin# = 1 — cos 2. This results in the following identities, which are useful
in integral calculus.

Half-Angle Formulas

cos?f = w (4)
sin2@ = l_gﬂ (5)

The Law of Cosines

If a, b, and c are sides of a triangle ABC and if 0 is the angle opposite c, then

c?=a%>+ b*> — 2abcosb. (6)

This equation is called the law of cosines.
y We can see why the law holds if we introduce coordinate axes with the origin at C and
the positive x-axis along one side of the triangle, as in Figure 1.75. The coordinates of 4
are (b, 0); the coordinates of B are (a cos 0, a sin ). The square of the distance between 4
and B is therefore

B(a cos 0, a sin 0)

2= (acos® — b)*> + (asinh)?

= a*(cos’# + sin’0) + b* — 2abcos b

o
o
|

P [ —
\ 1
c b AGb.0)
’ = a’ + b> — 2abcos .
FIGURE 1.75 The square of the distance The law of cosines generalizes the Pythagorean theorem. If § = 7r/2, then cos 6 = 0
between A and B gives the law of cosines. and ¢ = a® + b>.
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Transformations of Trigonometric Graphs

The rules for shifting, stretching, compressing, and reflecting the graph of a function ap-
ply to the trigonometric functions. The following diagram will remind you of the control-

ling parameters.

Vertical stretch or compression; Vertical shift
reflection about x-axis if negative /
y=af(b(x +¢)) +d

\Ilorizomal shift

Horizontal stretch or compression;
reflection about y-axis if negative

EXAMPLE 2  Modeling Temperature in Alaska

The builders of the Trans-Alaska Pipeline used insulated pads to keep the pipeline heat
from melting the permanently frozen soil beneath. To design the pads, it was necessary to
take into account the variation in air temperature throughout the year. The variation was
represented in the calculations by a general sine function or sinusoid of the form

fx) = Asin{zg(x - C)} + D,

where | 4| is the amplitude, | B|is the period, C is the horizontal shift, and D is the vertical
shift (Figure 1.76).

y
y=Asin(2£(x— C))+D
D+Al N B
Horizontal PR
H t

shift (C) mplitude (4) This axis is the

D line y = D.
D 77777777777777777777777777777777777

Vertical
shift (D)

<—This distance is—
the period (B).

FIGURE 1.76 The general sine curve y = 4 sin [(27/B)(x — C)] + D,
shown for 4, B, C, and D positive (Example 2).

Figure 1.77 shows how to use such a function to represent temperature data. The data
points in the figure are plots of the mean daily air temperatures for Fairbanks, Alaska,
based on records of the National Weather Service from 1941 to 1970. The sine function

used to fit the data is

flx) = 37 sin{z,zgg(x — 101)} + 25,
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where f is temperature in degrees Fahrenheit and x is the number of the day counting from
the beginning of the year. The fit, obtained by using the sinusoidal regression feature on a

calculator or computer, as we discuss in the next section, is very good at capturing the
trend of the data.

Temperature (°F)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar

FIGURE 1.77 Normal mean air temperatures for Fairbanks, Alaska, plotted as data points
(red). The approximating sine function (blue) is

f(x)  37sin[(2m 365)(x 101)] 25.
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EXERCISES 1.6

Radians, Degrees, and Circular Arcs

1. On a circle of radius 10 m, how long is an arc that subtends a cen-
tral angle of (a) 47r/5 radians? (b) 110°?

2. A central angle in a circle of radius 8 is subtended by an arc of
length 107r. Find the angle’s radian and degree measures.

3. You want to make an 80° angle by marking an arc on the perime-
ter of a 12-in.-diameter disk and drawing lines from the ends of
the arc to the disk’s center. To the nearest tenth of an inch, how
long should the arc be?

4. If you roll a 1-m-diameter wheel forward 30 cm over level
ground, through what angle will the wheel turn? Answer in radi-
ans (to the nearest tenth) and degrees (to the nearest degree).

Evaluating Trigonometric Functions

5. Copy and complete the following table of function values. If the
function is undefined at a given angle, enter “UND.” Do not use a
calculator or tables.

—2m/3 0 /2 3mw/4

sin 6
cos 0
tan 6
cot 6
sec 6
csc 6

6. Copy and complete the following table of function values. If the
function is undefined at a given angle, enter “UND.” Do not use a
calculator or tables.

0 —3m/2 —/3 —7/6 w/4 57/6

sin 6
cos 6
tan 6
cot
sec 6
csc

In Exercises 7—12, one of sin x, cos x, and tan x is given. Find the other
two if x lies in the specified interval.

|
| IS

7. sinx :é, X e E,W 8. tanx =2, xe O,W
5 2
_1 _m __3 ™
9. cosx = 3, xe{ 2,0} 10. cosx = 13’ xe[z,w}

_1 3m U 3m
11. tanx = XE[W,2:| 12. sinx = > xe[ﬂ',z]

Graphing Trigonometric Functions

Graph the functions in Exercises 13-22. What is the period of each
function?

|13. sin 2x 14. sin (x/2)
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1.6 Trigonometric Functions

17.

21.

15.

19.

CoS X 16. cos %
—sin % 18. —cos2mx

T . T
cos< - 2) 20. sm(x+ 2)

T
s1n(x 4) +1 22. cos(x + 4) 1

Graph the functions in Exercises 23-26 in the £s-plane (#-axis horizon-
tal, s-axis vertical). What is the period of each function? What sym-
metries do the graphs have?

23.

25S.

27.

28.

29.

30.

cot 2t = —tan ¢

«(3) o(3)

a. Graph y = cosx and y = secx together for —37/2 < x
= 37r/2. Comment on the behavior of sec x in relation to the
signs and values of cos x.

s =

26. s =

s =

b. Graph y = sinx and y = csc x together for —7 = x = 2.
Comment on the behavior of csc x in relation to the signs and
values of sin x.

Graph y = tanx and y = cotx together for =7 = x = 7. Com-
ment on the behavior of cot x in relation to the signs and values of
tan x.

Graph y = sinx and y = |sinx | together. What are the domain
and range of | sinx | ?
Graph y = sinx and y = [sinx] together. What are the domain
and range of [sinx]?

Additional Trigonometric Identities

Use the addition formulas to derive the identities in Exercises 31-36.

31.

33.

35.

36.
37.

38.

cos(x - %) = sinx 32. cos(x + %) = —sinx

. T\ . _m) _
s1n(x + E) = cosx 34. sm( 2)

cos(4 — B) = cos A cos B + sin 4 sin B (Exercise 53 provides a
different derivation.)

sin(4 — B) = sin4d cos B — cos Asin B

What happens if you take B =4 in the identity

cos(4 — B) = cos A cos B + sin 4 sin B? Does the result agree
with something you already know?

—COS X

What happens if you take B = 2 in the addition formulas? Do
the results agree with something you already know?

Using the Addition Formulas

In Exercises 3942, express the given quantity in terms of sin x and
COS X.

41.

43.

44.

45.

46.

. (37 37
sm(2 —x> 42. cos(2 +x)

T T T
Evaluate sin 2 s1n(4 + 3).

117 21
Evaluate cos o s 005(4 +3 )

T
Evaluate cos R

Evaluate sin E'

139,

cos(m + x) 40. sin(27m — x)

Using the Double-Angle Formulas

Find the function values in Exercises 47-50.

47.

49.

cos’ § 48. cos? E

sin? E 50. sin® §

Theory and Examples

51.

52.
53.

54.

55.

The tangent sum formula The standard formula for the tan-
gent of the sum of two angles is

_ tan4 + tan B
tan(4 + B) = ] —tanA4tan B~

Derive the formula.

(Continuation of Exercise 51.) Derive a formula for tan(4 — B).

Apply the law of cosines to the triangle in the accompanying fig-
ure to derive the formula for cos(4 — B).

y

a. Apply the formula for cos(4 — B) to the identity sin 6 =
cos (E - 0) to obtain the addition formula for sin(4 + B).

b. Derive the formula for cos(4 + B) by substituting —B for B
in the formula for cos(4 — B) from Exercise 35.

A triangle has sides ¢ = 2 and b = 3 and angle C = 60°. Find
the length of side c.
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56. A triangle has sides @ = 2 and b = 3 and angle C = 40°. Find
the length of side c.

57. The law of sines The law of sines says that if a, b, and c are the
sides opposite the angles 4, B, and C in a triangle, then
sind _ sinB _ sinC

a b c

Use the accompanying figures and the identity sin(7 — 0) =
sin 0, if required, to derive the law.

A A

B C B C

a a

58. A triangle has sides ¢ = 2 and b = 3 and angle C = 60° (as in
Exercise 55). Find the sine of angle B using the law of sines.

59. A triangle has side ¢ = 2 and angles 4 = 7/4 and B = 7/3.
Find the length a of the side opposite 4.

60. The approximation sin x = x It is often useful to know that,

when x is measured in radians, sinx ~ x for numerically small
values of x. In Section 3.8, we will see why the approximation
holds. The approximation error is less than 1 in 5000 if |x| < 0.1.

a. With your grapher in radian mode, graph y = sinxand y = x
together in a viewing window about the origin. What do you
see happening as x nears the origin?

b. With your grapher in degree mode, graph y = sinx and
y = x together about the origin again. How is the picture dif-
ferent from the one obtained with radian mode?

¢. A quick radian mode check Is your calculator in radian
mode? Evaluate sin x at a value of x near the origin, say
x = 0.1.If sinx =~ x, the calculator is in radian mode; if not,
it isn’t. Try it.

General Sine Curves

For
flx) =4 sin(%ﬂ(x - C)) + D,

identify 4, B, C, and D for the sine functions in Exercises 61-64 and
sketch their graphs (see Figure 1.76).

1

61. y =2sin(x + 7) — 1 62.y=%sin(7rx—7r)+§

63. y=—%sin(gt> + L e y=£sin%, L>0

65. Temperature in Fairbanks, Alaska Find the (a) amplitude, (b)
period, (¢) horizontal shift, and (d) vertical shift of the general
sine function

Flx) = 37sin(%(x - 101)) +25.

66. Temperature in Fairbanks, Alaska Use the equation in Exer-
cise 65 to approximate the answers to the following questions
about the temperature in Fairbanks, Alaska, shown in Figure 1.77.
Assume that the year has 365 days.

a. What are the highest and lowest mean daily temperatures
shown?

b. What is the average of the highest and lowest mean daily tem-
peratures shown? Why is this average the vertical shift of the
function?

COMPUTER EXPLORATIONS

In Exercises 67-70, you will explore graphically the general sine
function

fx) =4 sin(%n-(x - C)) +D

as you change the values of the constants 4, B, C, and D. Use a CAS
or computer grapher to perform the steps in the exercises.
67. The period B Set the constants 4 = 3, C = D = 0.

a. Plot f(x) for the values B = 1, 3, 27, 57 over the interval

—47 = x = 4ar. Describe what happens to the graph of the
general sine function as the period increases.

b. What happens to the graph for negative values of B? Try it
with B = —3and B = —27.
68. The horizontal shift C Set the constants 4 = 3, B = 6,D = 0.
a. Plot f(x) for the values C = 0, 1, and 2 over the interval
—47 = x = 4ar. Describe what happens to the graph of the
general sine function as C increases through positive values.
b. What happens to the graph for negative values of C?

¢. What smallest positive value should be assigned to C so the
graph exhibits no horizontal shift? Confirm your answer with
a plot.

69. The vertical shift D Set the constants 4 = 3, B = 6, C = 0.

a. Plot f(x) for the values D = 0, 1, and 3 over the interval
—4m = x = 4m. Describe what happens to the graph of the
general sine function as D increases through positive values.

b. What happens to the graph for negative values of D?
70. The amplitude A Set the constants B = 6,C = D = 0.

a. Describe what happens to the graph of the general sine func-
tion as A increases through positive values. Confirm your an-
swer by plotting f(x) for the values 4 = 1, 5, and 9.

b. What happens to the graph for negative values of 4?
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Graphing with Calculators and Computers

1.7

A graphing calculator or a computer with graphing software enables us to graph very com-
plicated functions with high precision. Many of these functions could not otherwise be eas-
ily graphed. However, care must be taken when using such devices for graphing purposes
and we address those issues in this section. In Chapter 4 we will see how calculus helps us
to be certain we are viewing accurately all the important features of a function’s graph.

Graphing Windows

When using a graphing calculator or computer as a graphing tool, a portion of the graph is
displayed in a rectangular display or viewing window. Often the default window gives an
incomplete or misleading picture of the graph. We use the term square window when the
units or scales on both axis are the same. This term does not mean that the display window
itself is square in shape (usually it is rectangular), but means instead that the x-unit is the
same as the y-unit.

When a graph is displayed in the default window, the x-unit may differ from the y-unit
of scaling in order to fit the graph in the display. The viewing window in the display is set
by specifying the minimum and maximum values of the independent and dependent vari-
ables. That is, an interval @ = x = b is specified as well as a range ¢ = y = d. The ma-
chine selects a certain number of equally spaced values of x between a and b. Starting with
a first value for x, if it lies within the domain of the function f being graphed, and if f(x)
lies inside the range [c, d], then the point (x, f(x)) is plotted. If x lies outside the domain of
f, or f(x) lies outside the specified range [c, d], the machine just moves on to the next
x-value since it cannot plot (¥, f(x)) in that case. The machine plots a large number of
points (x, f(x)) in this way and approximates the curve representing the graph by drawing
a short line segment between each plotted point and its next neighboring point, as we
might do by hand. Usually, adjacent points are so close together that the graphical repre-
sentation has the appearance of a smooth curve. Things can go wrong with this procedure
and we illustrate the most common problems through the following examples.

EXAMPLE 1 Choosing a Viewing Window

Graph the function f(x) = x> — 7x? + 28 in each of the following display or viewing
windows:

(a) [—10,10] by [—10, 10] (b) [—4, 4] by [—50, 10] (c) [—4, 10] by [—60, 60]

Solution

(a) Weselecta = —10,5 = 10, ¢ = —10, and d = 10 to specify the interval of x-values
and the range of y-values for the window. The resulting graph is shown in Figure
1.78a. It appears that the window is cutting off the bottom part of the graph and that
the interval of x-values is too large. Let’s try the next window.

(b) Now we see more features of the graph (Figure 1.78b), but the top is missing and we
need to view more to the right of x = 4 as well. The next window should help.

(¢) Figure 1.78c shows the graph in this new viewing window. Observe that we get a
more complete picture of the graph in this window and it is a reasonable graph of a
third-degree polynomial. Choosing a good viewing window is a trial-and-error
process which may require some troubleshooting as well.
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10 60

L e e A N

1)

-50 -60
(b) (©

FIGURE 1.78 The graph of f(x) = x*> — 7x + 28 in different viewing windows (Example 1). [

EXAMPLE 2 Square Windows

When a graph is displayed, the x-unit may differ from the y-unit, as in the graphs shown in
Figures 1.78b and 1.78c. The result is distortion in the picture, which may be misleading.
The display window can be made square by compressing or stretching the units on one
axis to match the scale on the other, giving the true graph. Many systems have built-in
functions to make the window ““square.” If yours does not, you will have to do some calcu-
lations and set the window size manually to get a square window, or bring to your viewing
some foreknowledge of the true picture.

Figure 1.79a shows the graphs of the perpendicular lines y = x and y =
—x + 3\6, together with the semicircle y = V9 — x%, in a nonsquare [—6, 6] by
[—6, 8] display window. Notice the distortion. The lines do not appear to be perpendicular,
and the semicircle appears to be elliptical in shape.

Figure 1.79b shows the graphs of the same functions in a square window in which the
x-units are scaled to be the same as the y-units. Notice that the [—6, 6] by [—4, 4] viewing
window has the same x-axis in both figures, but the scaling on the x-axis has been com-
pressed in Figure 1.79b to make the window square. Figure 1.79¢ gives an enlarged view
with a square [—3, 3] by [0, 4] window.

(a) (b) (©)

FIGURE 1.79 Graphs of the perpendicular lines y = xand y = —x + 3\/2, and the semicircle
y = V9 — x%, in (a) a nonsquare window, and (b) and (c) square windows (Example 2). |

If the denominator of a rational function is zero at some x-value within the viewing
window, a calculator or graphing computer software may produce a steep near-vertical line
segment from the top to the bottom of the window. Here is an example.

Copyright © 2005 Pearson Education, Inc., publishing as Pearson Addison-Wesley


http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html

1.7 Graphing with Calculators and Computers 61

EXAMPLE 3  Graph of a Rational Function

Graph the function y = > l P

Solution  Figure 1.80a shows the graph in the [—10, 10] by [—10, 10] default square
window with our computer graphing software. Notice the near-vertical line segment at
x = 2. It is not truly a part of the graph and x = 2 does not belong to the domain of the
function. By trial and error we can eliminate the line by changing the viewing window to
the smaller [—6, 6] by [—4, 4] view, revealing a better graph (Figure 1.80b).

10

I U
T 7

) 4
(@) (b)
FIGURE 1.80 Graphs of the function y = ﬁ (Example 3). ]

Sometimes the graph of a trigonometric function oscillates very rapidly. When a calcula-
tor or computer software plots the points of the graph and connects them, many of the maxi-
mum and minimum points are actually missed. The resulting graph is then very misleading.

EXAMPLE 4  Graph of a Rapidly Oscillating Function
Graph the function f(x) = sin 100x.

Solution  Figure 1.81a shows the graph of f in the viewing window [—12, 12] by
[—1, 1]. We see that the graph looks very strange because the sine curve should oscillate
periodically between —1 and 1. This behavior is not exhibited in Figure 1.81a. We might
experiment with a smaller viewing window, say [—6, 6] by [—1, 1], but the graph is not
better (Figure 1.81b). The difficulty is that the period of the trigonometric function
»y = sin 100x is very small (277/100 =~ 0.063). If we choose the much smaller viewing
window [—0.1, 0.1] by [—1, 1] we get the graph shown in Figure 1.81c. This graph reveals
L 1

p,lwt VIO (| AGRRG A V\ A
T T \/ \A v

) -1
@ (b) (c)

FIGURE 1.81 Graphs of the function y = sin 100x in three viewing windows. Because the period is 277/100 ~ 0.063,
the smaller window in (c) best displays the true aspects of this rapidly oscillating function (Example 4). [ |
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EXAMPLE 5  Another Rapidly Oscillating Function

Graph the function y = cosx + % sin 50x.

Solution  In the viewing window [—6, 6] by [—1, 1] the graph appears much like the co-
sine function with some small sharp wiggles on it (Figure 1.82a). We get a better look
when we significantly reduce the window to [—0.6, 0.6] by [0.8, 1.02], obtaining the graph
in Figure 1.82b. We now see the small but rapid oscillations of the second term,
1/50 sin 50x, added to the comparatively larger values of the cosine curve.

1 1.02

VIV].,

(a) (b)

FIGURE 1.82 1In (b) we see a close-up view of the function

y =cosx + % sin 50x graphed in (a). The term cos x clearly dominates the

second term sin 50x, which produces the rapid oscillations along the

€
> 50
cosine curve (Example 5). u

EXAMPLE 6  Graphing an 0dd Fractional Power
Graph the function y = x!3,
Solution  Many graphing devices display the graph shown in Figure 1.83a. When we

compare it with the graph of y = x'3 = Vxin Figure 1.38, we see that the left branch for
x < 0is missing. The reason the graphs differ is that many calculators and computer soft-

(a) (b)

FIGURE 1.83 The graph of y = x'/? is missing the left branch in (a). In
(b) we graph the function f(x) = |%| +|x|'/3 obtaining both branches. (See

Example 6.)
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TABLE 1.5 Price of a
U.S. postage stamp

Year x Cost y
1968 0.06
1971 0.08
1974 0.10
1975 0.13
1977 0.15
1981 0.18
1981 0.20
1985 0.22
1987 0.25
1991 0.29
1995 0.32
1998 0.33
2002 0.37
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ware programs calculate x'/3 as e!!/*'"*_(The exponential and logarithmic functions are
studied in Chapter 7.) Since the logarithmic function is not defined for negative values of
x, the computing device can only produce the right branch where x > 0.

To obtain the full picture showing both branches, we can graph the function

X
flx) = m.|x|l/3'

This function equals x'/* except at x = 0 (where f is undefined, although 0'/> = 0). The

graph of f is shown in Figure 1.83b. [

Empirical Modeling: Capturing the Trend of Collected Data

In Example 3 of Section 1.4, we verified the reasonableness of Kepler’s hypothesis that the
period of a planet’s orbit is proportional to its mean distance from the sun raised to the 3/2
power. If we cannot hypothesize a relationship between a dependent variable and an inde-
pendent variable, we might collect data points and try to find a curve that “fits” the data
and captures the trend of the scatterplot. The process of finding a curve to fit data is called
regression analysis and the curve is called a regression curve. A computer or graphing
calculator finds the regression curve by finding the particular curve which minimizes the
sum of the squares of the vertical distances between the data points and the curve. This
method of least squares is discussed in the Section 14.7 exercises.

There are many useful types of regression curves, such as straight lines, power, poly-
nomial, exponential, logarithmic, and sinusoidal curves. Many computers or graphing cal-
culators have a regression analysis feature to fit a variety of regression curve types. The
next example illustrates using a graphing calculator’s linear regression feature to fit data
from Table 1.5 with a linear equation.

EXAMPLE 7  Fitting a Regression Line

Starting with the data in Table 1.5, build a model for the price of a postage stamp as a
function of time. After verifying that the model is “reasonable,” use it to predict the price
in 2010.

Solution  We are building a model for the price of a stamp since 1968. There were two
increases in 1981, one of three cents followed by another of two cents. To make 1981 com-
parable with the other listed years, we lump them together as a single five-cent increase,
giving the data in Table 1.6. Figure 1.84a gives the scatterplot for Table 1.6.

TABLE 1.6 Price of a U.S postage stamp since 1968

x 0 3 6 7 9 13 17 19 23 27 30 34
6 8 10 13 15 20 22 25 29 32 33 37

Since the scatterplot is fairly linear, we investigate a linear model. Upon entering the data
into a graphing calculator (or computer software) and selecting the linear regression op-
tion, we find the regression line to be

y = 0.94x + 6.10.
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°
Price of stamps (cents)

0| 10 20 30 40 50 60

Year after 1968
(a) (b)

FIGURE 1.84 (a) Scatterplot of (x, y) data in Table 1.6. (b) Using the
regression line to estimate the price of a stamp in 2010. (Example 7).

Figure 1.84b shows the line and scatterplot together. The fit is remarkably good, so the
model seems reasonable.

Evaluating the regression line, we conclude that in 2010 (x = 42), the price of a
stamp will be

y = 0.94(42) + 6.10 =~ 46 cents.

The prediction is shown as the red point on the regression line in Figure 1.84b. [

EXAMPLE 8  Finding a Curve to Predict Population Levels

We may want to predict the future size of a population, such as the number of trout or cat-
fish living in a fish farm. Figure 1.85 shows a scatterplot of the data collected by R. Pearl
for a collection of yeast cells (measured as biomass) growing over time (measured in
hours) in a nutrient.

y
300
250 .
3200
.5 150

)
100
50 ®

°

Time

FIGURE 1.85 Biomass of a yeast culture versus

elapsed time (Example 8).
(Data from R. Pearl, “The Growth of Population,” Quart. Rev.
Biol., Vol. 2 (1927), pp. 532-548.)

The plot of points appears to be reasonably smooth with an upward curving trend. We
might attempt to capture this trend by fitting a polynomial (for example, a quadratic
y =ax? + bx + ¢), a power curve (y = ax?), or an exponential curve (y = ae’).
Figure 1.86 shows the result of using a calculator to fit a quadratic model.
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FIGURE 1.86 Fitting a quadratic to
Pearl’s data gives the equation
y = 6.10x* — 9.28x + 16.43 and the

prediction y(17) = 1622.65 (Example 8).

1.7 Graphing with Calculators and Computers 65

The quadratic model y = 6.10x* — 9.28x + 16.43 appears to fit the collected data
reasonably well (Figure 1.86). Using this model, we predict the population after 17 hours
as y(17) = 1622.65. Let us examine more of Pearl’s data to see if our quadratic model
continues to be a good one.

In Figure 1.87, we display all of Pearl’s data. Now you see that the prediction of
y(17) = 1622.65 grossly overestimates the observed population of 659.6. Why did the
quadratic model fail to predict a more accurate value?

2000
1800
1600

1400

1200 W Observed

A Predicted A
1000

800 x

Yeast Population
>

600 n
400

200 ]
L}

-]
lnmm® x
0 4.5 9 13.5 18
Time (hours)

FIGURE 1.87 The rest of Pearl’s data (Example 8).

The problem lies in the danger of predicting beyond the range of data used to build
the empirical model. (The range of data creating our model was 0 = x = 7.) Such ex-
trapolation is especially dangerous when the model selected is not supported by some un-
derlying rationale suggesting the form of the model. In our yeast example, why would we
expect a quadratic function as underlying population growth? Why not an exponential
function? In the face of this, how then do we predict future values? Often, calculus can
help, and in Chapter 9 we use it to model population growth. [

Regression Analysis
Regression analysis has four steps:

1. Plot the data (scatterplot).

2. Find a regression equation. For a line, it has the form y = mx + b, and for a
quadratic, the form y = ax? + bx + c.

3. Superimpose the graph of the regression equation on the scatterplot to see the fit.

4. If the fit is satisfactory, use the regression equation to predict y-values for val-
ues of x not in the table.
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EXERCISES 1.7

Choosing a Viewing Window

In Exercises 1-4, use a graphing calculator or computer to determine
which of the given viewing windows displays the most appropriate
graph of the specified function.

1. f(x) = x* — 7x% + 6x
a. [—-1,1]by[~1,1] b.
c. [10,10]by [-10,10] d.
2. f(x) =x* — 4x? — 4x + 16
a. [—1,1]by[-5, 5] b.
c. [-5,5]by[~10,20]  d.
3. f(x) =5+ 12x — x°
a. [-1,1]by[-1,1]
c. [—4, 4] by [—20, 20]
4. f(x) = V5 + 4x — x?
a. [—2,2]by [<2,2]
c. [~3,7] by [0, 10] d.

[=2,2] by [-5, 5]
[—5, 5] by [-25,15]

[-3,3] by [-10, 10]
[—20, 20] by [—100, 100]

&

[—5, 5] by [—10, 10]
[—4, 5] by [—15,25]

&

&

[-2,6]by[1,4]
[—10, 10] by [ 10, 10]

Determining a Viewing Window

In Exercises 5-30, determine an appropriate viewing window for the
given function and use it to display its graph.

3 2
5. f(x) = x* — 4x3 + 15 6.f(x):%—x7—2x+l
7. f(x) =x° —5x* + 10 8. f(x) = 4x3 — x*
9. f(x) =xV9 — x? 10. f(x) = x%(6 — x°)
11. y = 2x — 3x?3 12. y = x'Ax? - 8)
13. y = 55 — 2x 14. y = x?3(5 — x)
15. y = [x2 — 1] 16. y = |x* — x|
_x+3 o, 1
17'y_x+2 18. y = x+3
x> +2 x2 =1
19. = 20. =
J@) x2+1 J@) x2+1
x—1 8
21. f(x) = 22. f(x) =
R f0 = 50
6x> — 15x + 6 _x*-3
23. f(x) = 7 — 1ox 24. f(x) = P—
25. y = sin 250x 26. y = 3 cos 60x
_ X L (X
27. y = COS(SO) 28. y 10 s1n<10>
_ 1. -2, L
29. y=x+ 10s1n30x 30. y =x" + 5Ocos100x

31. Graph the lower half of the circle defined by the equation
X+ 20 =4+ 4y — R

32. Graph the upper branch of the hyperbola y? — 16x> = 1.

33. Graph four periods of the function f(x) = — tan 2x.

34. Graph two periods of the function f(x) = 3 cot% + 1.

35. Graph the function f(x) = sin 2x + cos 3x.

36. Graph the function f(x) = sin®x.

Graphing in Dot Mode

Another way to avoid incorrect connections when using a graphing
device is through the use of a “dot mode,” which plots only the points.
If your graphing utility allows that mode, use it to plot the functions in
Exercises 37-40.

_ 1 — gint
37.y—x_3 38.y—s1;1x
39. y = x| x| 40.y=§2:1

Regression Analysis

41. Table 1.7 shows the mean annual compensation of construction
workers.

TABLE 1.7 Construction workers’ average
annual compensation
Annual compensation

Year (dollars)

1980 22,033

1985 27,581

1988 30,466

1990 32,836

1992 34,815

1995 37,996

1999 42,236

2002 45,413

Source: U.S. Bureau of Economic Analysis.

a. Find a linear regression equation for the data.

b. Find the slope of the regression line. What does the slope rep-
resent?
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c¢. Superimpose the graph of the linear regression equation on a
4 scatterplot of the data. TABLE 1.9 Vehicular stopping distance
L d. Use th i tion to predict the construction work
. Use the regression equation to predict the construction work- . .
ers’ average annual compensation in 2010. Speed (mph) Average total stopping distance (ft)
42. The median price of existing single-family homes has increased 20 42
consistently since 1970. The data in Table 1.8, however, show that ) 6
there have been differences in various parts of the country. 5 5
a. Find a linear regression equation for home cost in the 30 735
Northeast. 35 91.5
b. What does the slope of the regression line represent? 40 116
c. Find a linear regression equation for home cost in the 45 142.5
Midwest. 50 173
d. Where is the median price increasing more rapidly, in the 55 209.5
i ?
Northeast or the Midwest? 60 248
65 292.5
70 343
TABLE 1.8 Median price of single-family homes S 401
80 464
Northeast Midwest
Year (dollars) (dollars) )
Source: U.S. Bureau of Public Roads.
1970 25,200 20,100
1975 39.300 30.100 44. Stern waves Observations of the stern waves that follow a boat
’ ’ at right angles to its course have disclosed that the distance be-
1980 60,800 51,900 tween the crests of these waves (their wave length) increases with
1985 88,900 58,900 the speed of the boat. Table 1.10 shows the relationship between
1990 141,200 74,000 wave length and the speed of the boat.
1995 197,100 88,300
2000 264,700 97,000
TABLE 1.10 Wave lengths
Source: National Association of Realtors® Wave length (m) Speed (km/h)
0.20 1.8
43. Vehicular stopping distance Table 1.9 shows the total stopping 0.65 3.6
distance of a car as a function of its speed. 1.13 54
a. Find the quadratic regression equation for the data in Table 1.9. 2.55 7.2
b. Superimpose the graph of the quadratic regression equation 4.00 9.0
on a scatterplot of the data. 575 10.8
c. Use the graph of the quadratic regression equation to predict 7.80 12.6
the average total stopping distance for speeds of 72 and 85
. . 10.20 14.4
mph. Confirm algebraically.
. . . 12.90 16.2
d. Now use /inear regression to predict the average total stop-
ping distance for speeds of 72 and 85 mph. Superimpose the 16.00 18.0
regression line on a scatterplot of the data. Which gives the 18.40 19.8
better fit, the line here or the graph in part (b)?
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a. Find a power regression equation y = ax” for the data in ¢. Use the graph of the power regression equation to predict
Table 1.10, where x is the wave length, and y the speed of the the speed of the boat when the wave length is 11 m. Confirm
boat. algebraically.

b. Superimpose the graph of the power regression equation on a d. Now use /inear regression to predict the speed when the wave
scatterplot of the data. length is 11 m. Superimpose the regression line on a scatter-

plot of the data. Which gives the better fit, the line here or the
curve in part (b)?
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Chapter

10.

11.

12.

13.

14.

15.

How are the real numbers represented? What are the main cate-
gories characterizing the properties of the real number system?
What are the primary subsets of the real numbers?

How are the rational numbers described in terms of decimal ex-
pansions? What are the irrational numbers? Give examples.

What are the order properties of the real numbers? How are they
used in solving equations?

What is a number’s absolute value? Give examples? How are
|—al, |ab|, |a/b|,and |a + b|related to |a| and |b|?

How are absolute values used to describe intervals or unions of
intervals? Give examples.

How do we identify points in the plane using the Cartesian coor-
dinate system? What is the graph of an equation in the variables x
and y?

How can you write an equation for a line if you know the coordi-
nates of two points on the line? The line’s slope and the coordi-
nates of one point on the line? The line’s slope and y-intercept?
Give examples.

What are the standard equations for lines perpendicular to the co-
ordinate axes?

How are the slopes of mutually perpendicular lines related? What
about parallel lines? Give examples.

When a line is not vertical, what is the relation between its slope
and its angle of inclination?

How do you find the distance between two points in the coordi-
nate plane?

What is the standard equation of a circle with center (4, k) and ra-
dius a? What is the unit circle and what is its equation?

Describe the steps you would take to graph the circle
x2+y?+ 4 — 6y + 12 =0.

What inequality describes the points in the coordinate plane that
lie inside the circle of radius a centered at the point (4, k)? That
lie inside or on the circle? That lie outside the circle? That lie out-
side or on the circle?

If a, b, and c are constants and @ # 0, what can you say about the
graph of the equation y = ax®> + bx + ¢? In particular, how
would you go about sketching the curve y = 2x? + 4x?

16

17.

18.
19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Questions to Guide Your Review

. What is a function? What is its domain? Its range? What is an ar-
row diagram for a function? Give examples.

What is the graph of a real-valued function of a real variable?
What is the vertical line test?

What is a piecewise-defined function? Give examples.

What are the important types of functions frequently encountered
in calculus? Give an example of each type.

In terms of its graph, what is meant by an increasing function? A
decreasing function? Give an example of each.

What is an even function? An odd function? What symmetry
properties do the graphs of such functions have? What advantage
can we take of this? Given an example of a function that is neither
even nor odd.

What does it mean to say that y is proportional to x? To x*/2?
What is the geometric interpretation of proportionality? How can
this interpretation be used to test a proposed proportionality?

If f and g are real-valued functions, how are the domains of
f+egf—gfg, and f/g related to the domains of f and g?
Give examples.

When is it possible to compose one function with another? Give
examples of composites and their values at various points. Does
the order in which functions are composed ever matter?

How do you change the equation y = f(x) to shift its graph verti-
cally up or down by a factor £ > 0? Horizontally to the left or
right? Give examples.

How do you change the equation y = f(x) to compress or stretch
the graph by ¢ > 1? Reflect the graph across a coordinate axis?
Give examples.

What is the standard equation of an ellipse with center (4, k)?
What is its major axis? Its minor axis? Give examples.

What is radian measure? How do you convert from radians to de-
grees? Degrees to radians?

Graph the six basic trigonometric functions. What symmetries do
the graphs have?

What is a periodic function? Give examples. What are the periods
of the six basic trigonometric functions?
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31. Starting with the identity sin®6 + cos’6 = 1 and the formulas stretching, compressing, and reflection of its graph? Give exam-
for cos (4 + B) and sin (4 + B), show how a variety of other ples. Graph the general sine curve and identify the constants 4, B,
trigonometric identities may be derived. C,and D.

32. How does the formula for the general sine function 33. Name three issues that arise when functions are graphed using a
f(x) = Asin (2m/B)(x — C)) + D relate to the shifting, calculator or computer with graphing software. Give examples.
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Chapter Practice Exercises

Inequalities

In Exercises 14, solve the inequalities and show the solution sets on
the real line.

1. 7+ 2x =3 2. 3x <10

x—32_4+x

3 2 3

.%(x—l)<%(x—2) 4.

Absolute Value

Solve the equations or inequalities in Exercises 5-8.

5.|x+1]=7 6. [y —3] <4
X 3 2x + 7

7. 1-5]>3 8. 3 ‘ss

Coordinates

9. A particle in the plane moved from 4(—2, 5) to the y-axis in such
a way that Ay equaled 3Ax. What were the particle’s new coordi-
nates?

10. a. Plot the points A4(8, 1), B(2, 10), C(—4,6), D(2, —3), and
E(14/3, 6).

b. Find the slopes of the lines AB, BC, CD, DA, CE, and BD.

¢. Do any four of the five points 4, B, C, D, and E form a paral-
lelogram?

d. Are any three of the five points collinear? How do you know?

e. Which of the lines determined by the five points pass through
the origin?

11. Do the points A(6, 4), B(4, —3), and C(—2, 3) form an isosceles
triangle? A right triangle? How do you know?

12. Find the coordinates of the point on the line y = 3x + 1 that is
equidistant from (0, 0) and (—3, 4).

Lines

In Exercises 13—24, write an equation for the specified line.
13. through (1, —6) with slope 3

14. through (—1, 2) with slope —1/2

15. the vertical line through (0, —3)

16. through (=3, 6) and (1, —2)

17. the horizontal line through (0, 2)

18. through (3, 3) and (-2, 5)

19. with slope —3 and y-intercept 3

20. through (3, 1) and parallel to 2x — y = =2

21. through (4, —12) and parallel to 4x + 3y = 12

22. through (—2, —3) and perpendicular to 3x — 5y = 1

23. through (—1, 2) and perpendicular to (1/2)x + (1/3)y = 1
24. with x-intercept 3 and y-intercept —5

Functions and Graphs

25. Express the area and circumference of a circle as functions of the
circle’s radius. Then express the area as a function of the circum-
ference.

26. Express the radius of a sphere as a function of the sphere’s surface
area. Then express the surface area as a function of the volume.

27. A point P in the first quadrant lies on the parabola y = x?. Ex-
press the coordinates of P as functions of the angle of inclination
of the line joining P to the origin.

28. A hot-air balloon rising straight up from a level field is tracked by
a range finder located 500 ft from the point of liftoff. Express the
balloon’s height as a function of the angle the line from the range
finder to the balloon makes with the ground.

In Exercises 29-32, determine whether the graph of the function is
symmetric about the y-axis, the origin, or neither.

29. y = x5 30. y = X3
3 y=x2 —2x — 1 32.y=e¢~

In Exercises 33-40, determine whether the function is even, odd, or
neither.

33. y=x2+ 1 4. y=x"—x—x

35. y=1 — cosx 36. y = secxtanx
4

3. y= 21 38y =1 — sinx
x7 = 2x

39. y =x + cosx 40. y = Vx* -1
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In Exercises 41-50, find the (a) domain and (b) range.
41. y=|x| -2 2. y=-2+VI1—-x
43. y = V16 — x? 44, y =327+ ]

45. y=2¢* -3 46. y = tan (2x — )
47. y=2sinBx + 7)) — 1  48. y = x?*
49. y=In(x —3) + 1 50. y=—1+ V2 —x

Piecewise-Defined Functions

In Exercises 51 and 52, find the (a) domain and (b) range.
V —x, —4=x=0

51. y =

Vi, 0<x=4

—x — 2, —2=x=-1
52. y = X, -1<x=1
—x + 2, 1 <x=2

In Exercises 53 and 54, write a piecewise formula for the function.

53. 54. v
2,5
1 \ T
of i >
0 4 *
Composition of Functions
In Exercises 55 and 56, find
a. (f o g)(-1). b. (g ° f)(2).
c. (f o fix). d. (g°2)x).
1 1
55. = =—
fo) =% gk s

56. f(x) =2 —x, glx) = Vx+1

In Exercises 57 and 58, (a) write a formula for f o g and g © f and
find the (b) domain and (c) range of each.

57. f(x) =2 — x?, gx) = Vx+2

58. f(x) = \/);, glx) = VI —«x

Composition with absolute values In Exercises 59-64, graph f
and f, together. Then describe how applying the absolute value func-
tion before applying f; affects the graph.

fi(x) fa(x) = fi(lx))

59. x |x|
60. x° x|
61. x2 x|

1 1
62. E
63. Vx Vx|
64. sinx sin | x|

Composition with absolute values In Exercises 65-68, graph g;
and g together. Then describe how taking absolute values after apply-
ing g affects the graph.

gi(x) £:2(x) = |gi(x)]
65. x° |23
66. Vx |'Vx|
67. 4 — x? |4 — x|
68. x* + x |x2 + x|
Trigonometry

In Exercises 69-72, sketch the graph of the given function. What is the
period of the function?

69.

71.

73.

74.

y = cos2x 70. y = sin%
y = sinmx 72. y = cos%
Sketch the graph y = 2 cos (x - %)

Sketch the graph y = 1 + sin (x + %)

In Exercises 75-78, ABC is a right triangle with the right angle at C.
The sides opposite angles 4, B, and C are a, b, and c, respectively.

75.

76.

77.

78.

79.

80.

. Findaandbifc = 2,B = m/3.
Findaand cifb = 2, B = 7/3.
Express a in terms of 4 and c.
Express a in terms of 4 and b.
Express a in terms of B and b.
Express c in terms of 4 and a.

. Express sin 4 in terms of @ and c.

S s T e T TR

Express sin 4 in terms of b and c.

Height of a pole Two wires stretch from the top 7 of a vertical
pole to points B and C on the ground, where C is 10 m closer to
the base of the pole than is B. If wire BT makes an angle of 35°
with the horizontal and wire CT makes an angle of 50° with the
horizontal, how high is the pole?

Height of a weather balloon Observers at positions 4 and B
2 km apart simultaneously measure the angle of elevation of a
weather balloon to be 40° and 70°, respectively. If the balloon is
directly above a point on the line segment between A and B, find
the height of the balloon.

. Graph the function f(x) = sinx + cos(x/2).
What appears to be the period of this function?
. Confirm your finding in part (b) algebraically.
. Graph f(x) = sin(1/x).

What are the domain and range of f?

e ¥ e e T

. Is f periodic? Give reasons for your answer.

Copyright © 2005 Pearson Education, Inc., publishing as Pearson Addison-Wesley


http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html

Chapter 1 Additional and Advanced Exercises 71

Chapter

Functions and Graphs
1. The graph of f is shown. Draw the graph of each function.

a. y = f(-x) b. y=—fx)
c. y=2f(x+ 1)+ 1 d. y=3f(x—2)—2
y
S _'1 b—1L>x

2. A portion of the graph of a function defined on [—3, 3] is shown.
Complete the graph assuming that the function is

a. even. b. odd.

(3,2)

(1o

3. Are there two functions f and g such that f c g = g o f? Give
reasons for your answer.

4. Are there two functions f and g with the following property? The
graphs of f and g are not straight lines but the graph of f o gisa
straight line. Give reasons for your answer.

5. If f(x) is odd, can anything be said of g(x) = f(x) — 2? What if
f is even instead? Give reasons for your answer.

6. If g(x) is an odd function defined for all values of x, can anything
be said about g(0)? Give reasons for your answer.

7. Graph the equation |x| + |y| = 1 + x.
8. Graph the equation y + |y| = x + |x|.

Trigonometry

In Exercises 9-14, ABC is an arbitrary triangle with sides a, b, and ¢
opposite angles 4, B, and C, respectively.

9. Findbifa = /3,4 = w/3,B = w/4.
10. FindsinBifa = 4,b = 3,4 = w/4.
11. Findcos Aifa =2,b =2,¢ = 3.

12. Findcifa = 2,b = 3,C = w/4.

Additional and Advanced Exercises

13. FindsinBifa =2,b = 3,¢c = 4.
14. FindsinCifa =2,b = 4,c = 5.

Derivations and Proofs

15. Prove the following identities.

1 —cosx _ sinx
sin x 1 + cosx
Il —cosx . ,x

1+ cosx tan 2

16. Explain the following “proof without words” of the law of
cosines. (Source: “Proof without Words: The Law of Cosines,”
Sidney H. Kung, Mathematics Magazine, Vol. 63, No. 5, Dec.
1990, p. 342.)

17. Show that the area of triangle ABC is given by
(1/2)absin C = (1/2)bcsinA = (1/2)casin B.

C

18. Show that the area of triangle ABC is given by
Vis(s — a)(s — b)(s — ¢) wheres = (a + b + c)/2 is the
semiperimeter of the triangle.

19. Properties of inequalities If ¢ and b are real numbers, we say
that a is less than b and write @ < b if (and only if) b — a is
positive. Use this definition to prove the following properties of
inequalities.

If a, b, and ¢ are real numbers, then:
a<b=>atc<b+c

a<b=>a—-c<b-c

.a<bandc >0 = ac < be

.a<bandc <0 = bc < ac

(Special case:a < b = —b < —aq)

e -
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5.a>0$%>0

Q=

6. 0<a<b=_-<

Q=

T.a<b<0= <

= =

20. Prove that the following inequalities hold for any real numbers a
and b.

a. |a| <|b| ifandonlyifa® < b*

b. [a —b| = ||la[—]b]|
Generalizing the triangle inequality = Prove by mathematical in-
duction that the inequalities in Exercises 21 and 22 hold for any # real

numbers a;, ay, ..., a,. (Mathematical induction is reviewed in Ap-
pendix 1.)

21 Jay + ar + -
2. ja +ay+

23. Show that if f is both even and odd, then f(x) = 0 for every x in
the domain of f.

+ ay| = lay| + |az| + -+ |an]

ta|=lal-lal- - —la]

24. a. Even-odd decompositions Let f be a function whose do-
main is symmetric about the origin, that is, —x belongs to the
domain whenever x does. Show that f is the sum of an even
function and an odd function:

f&x) = Ex) + O(x),

where E is an even function and O is an odd function. (Hint:
Let E(x) = (f(x) + f(—x))/2. Show that E(—x) = E(x), so
that £ is even. Then show that O(x) = f(x) — E(x) is odd.)

b. Uniqueness Show that there is only one way to write f as
the sum of an even and an odd function. (Hint: One way is
given in part (a). If also f(x) = Ei(x) + O,(x) where E| is
even and O is odd, show that £ — E; = Oy — O. Then use
Exercise 23 to show that £ = E;and O = 0;.)

Grapher Explorations—Effects of Parameters
25. What happens to the graph of y = ax?> + bx + cas

a. a changes while b and ¢ remain fixed?

b. b changes (a and ¢ fixed, a # 0)?

¢. ¢ changes (a and b fixed, a # 0)?
26. What happens to the graph of y = a(x + b)> + cas

a. a changes while b and ¢ remain fixed?

b. b changes (a and ¢ fixed, a # 0)?
c. ¢ changes (a and b fixed, a # 0)?

27. Find all values of the slope of the line y = mx + 2 for which the
x-intercept exceeds 1/2.

Geometry

28. An object’s center of mass moves at a constant velocity v along a
straight line past the origin. The accompanying figure shows the
coordinate system and the line of motion. The dots show positions
that are 1 sec apart. Why are the areas 41, 4,, ..., As in the figure
all equal? As in Kepler’s equal area law (see Section 13.6), the
line that joins the object’s center of mass to the origin sweeps out
equal areas in equal times.

Kilometers

Kilometers

29. a. Find the slope of the line from the origin to the midpoint P, of
side 4B in the triangle in the accompanying figure (a, b > 0).

y

B(0, b)

X
o A(a, 0)

b. When is OP perpendicular to AB?
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Chapter Technology Application Projects

An Overview of Mathematica

An overview of Mathematica sufficient to complete the Mathematica modules appearing on the Web site.
Mathematica/Maple Module

Modeling Change: Springs, Driving Safety, Radioactivity, Trees, Fish, and Mammals.

Construct and interpret mathematical models, analyze and improve them, and make predictions using them.
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2.1

LiMITS AND CONTINUITY

OVERVIEW The concept of a limit is a central idea that distinguishes calculus from alge-
bra and trigonometry. It is fundamental to finding the tangent to a curve or the velocity of
an object.

In this chapter we develop the limit, first intuitively and then formally. We use limits
to describe the way a function f varies. Some functions vary continuously; small changes
in x produce only small changes in f(x). Other functions can have values that jump or vary
erratically. The notion of limit gives a precise way to distinguish between these behaviors.
The geometric application of using limits to define the tangent to a curve leads at once to
the important concept of the derivative of a function. The derivative, which we investigate
thoroughly in Chapter 3, quantifies the way a function’s values change.

Rates of Change and Limits

In this section, we introduce average and instantaneous rates of change. These lead to the
main idea of the section, the idea of limit.

Average and Instantaneous Speed

A moving body’s average speed during an interval of time is found by dividing the dis-
tance covered by the time elapsed. The unit of measure is length per unit time: kilometers
per hour, feet per second, or whatever is appropriate to the problem at hand.

EXAMPLE 1  Finding an Average Speed

A rock breaks loose from the top of a tall cliff. What is its average speed
(a) during the first 2 sec of fall?

(b) during the 1-sec interval between second 1 and second 2?

Solution  In solving this problem we use the fact, discovered by Galileo in the late six-
teenth century, that a solid object dropped from rest (not moving) to fall freely near the
surface of the earth will fall a distance proportional to the square of the time it has been
falling. (This assumes negligible air resistance to slow the object down and that gravity is

73
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HisTORICAL BIOGRAPHY*

Galileo Galilei
(1564-1642)

the only force acting on the falling body. We call this type of motion free fall.) If y denotes
the distance fallen in feet after 7 seconds, then Galileo’s law is

y = 1612,

where 16 is the constant of proportionality.
The average speed of the rock during a given time interval is the change in distance,
Ay, divided by the length of the time interval, Az.

: Ay 16(2)* - 16(0)° fi
(a) For the first 2 sec: A 2-0  ~ 32@
Ay 16(2)* — 16(1)>
(b) From sec 1 to sec 2: TJ; = % = 48% ]

The next example examines what happens when we look at the average speed of a falling
object over shorter and shorter time intervals.

EXAMPLE 2

Find the speed of the falling rock at# = 1 and t = 2 sec.

Finding an Instantaneous Speed

Solution ~ We can calculate the average speed of the rock over a time interval [¢,, £y + 4],
having length A = 4, as
Ay 16(10 + h)* — 161° .
At h : (1)

We cannot use this formula to calculate the “instantaneous” speed at #y by substituting
h = 0, because we cannot divide by zero. But we can use it to calculate average speeds
over increasingly short time intervals starting at ¢, = 1 and £, = 2. When we do so, we see
a pattern (Table 2.1).

TABLE 2.1 Average speeds over short time intervals

A 3 Ay 160 + h)* — 161)°

verage speed: 3 = I

Length of Average speed over Average speed over
time interval interval of length A interval of length A
h starting at#) = 1 starting at 7y = 2
1 48 80
0.1 33.6 65.6
0.01 32.16 64.16
0.001 32.016 64.016
0.0001 32.0016 64.0016

The average speed on intervals starting at £y = 1 seems to approach a limiting value

of 32 as the length of the interval decreases. This suggests that the rock is falling at a speed
of 32 ft/sec at fp = 1 sec. Let’s confirm this algebraically.

To learn more about the historical figures and the development of the major elements and topics of calcu-
lus, visit www.aw-bc.com/thomas.
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FIGURE 2.1 A secant to the graph
y = f(x). Its slope is Ay/Ax, the
average rate of change of f over the
interval [x;, x2].
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Ifwe set fp = 1 and then expand the numerator in Equation (1) and simplify, we find that

Ay 16(1 + h)* — 16(1)*  16(1 + 2k + k%) — 16
N h B h
2
= 2RALON 35+ 16,

For values of 4 different from 0, the expressions on the right and left are equivalent and the
average speed is 32 + 16A ft/sec. We can now see why the average speed has the limiting
value 32 + 16(0) = 32 ft/sec as h approaches 0.
Similarly, setting #, = 2 in Equation (1), the procedure yields

Ay

E =64 + 16Ah
for values of £ different from 0. As /& gets closer and closer to 0, the average speed at
fo = 2 sec has the limiting value 64 ft/sec. [

Average Rates of Change and Secant Lines

Given an arbitrary function y = f(x), we calculate the average rate of change of y with
respect to x over the interval [x;,x;] by dividing the change in the value of y,
Ay = f(x;) — f(x1), by the length Ax = x; — x; = & of the interval over which the
change occurs.

DEFINITION  Average Rate of Change over an Interval
The average rate of change of y = f(x) with respect to x over the interval [x, x;] is

Ay [ = fO) _ fath) — fn)

Ax X2 T X h

, h # 0.

Geometrically, the rate of change of f over [xj, x;] is the slope of the line through the
points P(x;, f(x1)) and OQ(x,, f(x;)) (Figure 2.1). In geometry, a line joining two points of
a curve is a secant to the curve. Thus, the average rate of change of f from x; to x; is iden-
tical with the slope of secant PQ.

Experimental biologists often want to know the rates at which populations grow under
controlled laboratory conditions.

EXAMPLE 3  The Average Growth Rate of a Laboratory Population

Figure 2.2 shows how a population of fruit flies (Drosophila) grew in a 50-day experi-
ment. The number of flies was counted at regular intervals, the counted values plotted with
respect to time, and the points joined by a smooth curve (colored blue in Figure 2.2). Find
the average growth rate from day 23 to day 45.

Solution  There were 150 flies on day 23 and 340 flies on day 45. Thus the number of
flies increased by 340 — 150 = 190 in 45 — 23 = 22 days. The average rate of change
of the population from day 23 to day 45 was

Ap 340 — 150 _ 190

Average rate of change: A 45-23 » * 8.6 flies/day.
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350
300
250
200
150
100

50

0(45, 340)
Ap =190

P(23, 150) day

Number of flies

At=22

0 10 20 30 40 50
Time (days)

FIGURE 2.2  Growth of a fruit fly population in a controlled
experiment. The average rate of change over 22 days is the slope
Ap/ At of the secant line.

This average is the slope of the secant through the points P and Q on the graph in Figure
2.2. [

The average rate of change from day 23 to day 45 calculated in Example 3 does not
tell us how fast the population was changing on day 23 itself. For that we need to examine
time intervals closer to the day in question.

EXAMPLE 4  The Growth Rate on Day 23

How fast was the number of flies in the population of Example 3 growing on day 23?

Solution  To answer this question, we examine the average rates of change over increas-
ingly short time intervals starting at day 23. In geometric terms, we find these rates by cal-
culating the slopes of secants from P to O, for a sequence of points Q approaching P along
the curve (Figure 2.3).

P
-
Sf!l(')pe (()ifPQ = Ap/At 350 B(35,350)
45,340
0 (flies /day) 50 o( )
— 3
(45, 340) 340 — 150 ~ 86 = 250
45 — 23 5
330 — 150 g
(40, 330) 40 =3 © 10.6 § 150
100
310 — 150
(35,310) 35— 03 13.3 50
(30, 265) % ~ 164 0 1007\ 20 30 40 50 !

A(14,0) Time (days)

FIGURE 2.3 The positions and slopes of four secants through the point P on the fruit fly graph (Example 4).
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The values in the table show that the secant slopes rise from 8.6 to 16.4 as the #-coor-
dinate of Q decreases from 45 to 30, and we would expect the slopes to rise slightly higher
as ¢ continued on toward 23. Geometrically, the secants rotate about P and seem to ap-
proach the red line in the figure, a line that goes through P in the same direction that the
curve goes through P. We will see that this line is called the fangent to the curve at P.
Since the line appears to pass through the points (14, 0) and (35, 350), it has slope

350 -0 . .
3514 16.7 flies/day (approximately).
On day 23 the population was increasing at a rate of about 16.7 flies/day. [

The rates at which the rock in Example 2 was falling at the instants # = 1 and # = 2
and the rate at which the population in Example 4 was changing on day ¢+ = 23 are called
instantaneous rates of change. As the examples suggest, we find instantaneous rates as
limiting values of average rates. In Example 4, we also pictured the tangent line to the pop-
ulation curve on day 23 as a limiting position of secant lines. Instantaneous rates and tan-
gent lines, intimately connected, appear in many other contexts. To talk about the two con-
structively, and to understand the connection further, we need to investigate the process by
which we determine limiting values, or limits, as we will soon call them.

Limits of Function Values

Our examples have suggested the limit idea. Let’s begin with an informal definition of
limit, postponing the precise definition until we’ve gained more insight.

Let f(x) be defined on an open interval about x, except possibly at x, itself. If f(x)
gets arbitrarily close to L (as close to L as we like) for all x sufficiently close to x, we say
that f approaches the limit L as x approaches x(, and we write

lim f(x) =L,
X—>Xo
which is read “the limit of f(x) as x approaches x is L”. Essentially, the definition says that
the values of f(x) are close to the number L whenever x is close to x( (on either side of xg).
This definition is “informal” because phrases like arbitrarily close and sufficiently close are
imprecise; their meaning depends on the context. To a machinist manufacturing a piston,
close may mean within a few thousandths of an inch. To an astronomer studying distant
galaxies, close may mean within a few thousand light-years. The definition is clear enough,
however, to enable us to recognize and evaluate limits of specific functions. We will need the
precise definition of Section 2.3, however, when we set out to prove theorems about limits.

EXAMPLE 5  Behavior of a Function Near a Point

How does the function

2
x“—1
x—1

fx) =

behave near x = 1?

Solution  The given formula defines f for all real numbers x except x = 1 (we cannot di-
vide by zero). For any x # 1, we can simplify the formula by factoring the numerator and
canceling common factors:

x—Dx+1 _

x+1 for x# 1.
x—1

fx) =
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The graph of f is thus the line y = x + 1 with the point (1, 2) removed. This removed
point is shown as a “hole” in Figure 2.4. Even though f(1) is not defined, it is clear that
we can make the value of f(x) as close as we want to 2 by choosing x close enough to 1

(Table 2.2).
TABLE 2.2 The closer x gets to 1, the closer f(x) = (x> — 1)/(x — 1)
seems to get to 2
X
Values of x below and above 1 fx) = < __ 1 =X +1, x#1
! 0.9 1.9
1.1 2.1
,L 0.99 1.99
1.01 2.01
1 yoad 0.999 1.999
1.001 2.001
/ 0.999999 1.999999
2] 0 i * 1.000001 2.000001
FIGURE 2.4 The graph of f is
identical with the line y = x + 1
exceptat x = 1, where f is not We say that f(x) approaches the limit 2 as x approaches 1, and write
defined (Example 5). ) o2
lim f(x) = 2, or lim =2. [
x—1 x—1x — 1

EXAMPLE 6  The Limit Value Does Not Depend on How the Function Is
Defined at x

The function f in Figure 2.5 has limit 2 as x — 1 even though f is not defined at x = 1.
The function g has limit 2 as x — 1 even though 2 # g(1). The function # is the only one

y y y

2+ 2+ 2+

1 1 (] 1
/ | x / | x / | x
~1 0 1 =1 0 1 ~1 0 1

5 x2—1, Y #
@ o = =] (b) g =1 ¥~ 1 © h()=x+1
1, x=1

FIGURE 2.5 The limits of f(x), g(x), and /(x) all equal 2 as x approaches 1. However,
only /(x) has the same function value as its limit at x = 1 (Example 6).
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y whose limit as x — 1 equals its value at x = 1. For %, we have lim,—; 4(x) = A(1). This
equality of limit and function value is special, and we return to it in Section 2.6. [

Sometimes lim,—., f(x) can be evaluated by calculating f(x,). This holds, for exam-
] — ple, whenever f(x) is an algebraic combination of polynomials and trigonometric func-
tions for which f(xy) is defined. (We will say more about this in Sections 2.2 and 2.6.)

x EXAMPLE 7  Finding Limits by Calculating f(x)
(a) lim(4) =4

(a) Identity function () lim (4) =4
y x——13

X0

(c) lir%x=3
xX—>

(d) lirré(Sx—3)= 10-3=7
xX—>

T © lim3x+4_—6+4_

|

|

|

|

|

2
am s T 2+5 3 -

0 X * EXAMPLE 8  The Identity and Constant Functions Have Limits at Every Point

(a) If f is the identity function f(x) = x, then for any value of x, (Figure 2.6a),
(b) Constant function
lim f(x) = lim x = xo.
FIGURE 2.6 The functions in Example 8. ¥ ¥
(b) If f is the constant function f(x) = k (function with the constant value k), then for
any value of x( (Figure 2.6b),
lim f(x) = lim k = k.
For instance,
limx =3 and lim (4) = lim(4) = 4.
x——7 x—2

x—3

We prove these results in Example 3 in Section 2.3. [

Some ways that limits can fail to exist are illustrated in Figure 2.7 and described in the
next example.

y y
_ 0, x<O0 1
Tl x=zo0
1
x x
0 0
0, x=0
Y= 01
U sin ¢, x> 0
1k
(a) Unit step function U(x) (b) g(x) () f(x)

FIGURE 2.7 None of these functions has a limit as x approaches 0 (Example 9).
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EXAMPLE 9 A Function May Fail to Have a Limit at a Point in Its Domain

Discuss the behavior of the following functions as x — 0.

(@ U) {0’ x=0
x =
I, x=0
%, x#0
b =
(b) g(x) 0. x=0
0, x=0
(© fx) = .
siny, x>0
Solution

(a) It jumps: The unit step function U(x) has no limit as x — 0 because its values jump
at x = 0. For negative values of x arbitrarily close to zero, U(x) = 0. For positive
values of x arbitrarily close to zero, U(x) = 1. There is no single value L approached
by U(x) as x — 0 (Figure 2.7a).

(b) It grows too large to have a limit: g(x) has no limit as x — 0 because the values of g
grow arbitrarily large in absolute value as x — 0 and do not stay close to any real
number (Figure 2.7b).

(¢) Itoscillates too much to have a limit: f(x) has no limit as x — 0 because the function’s
values oscillate between +1 and —1 in every open interval containing 0. The values
do not stay close to any one number as x — 0 (Figure 2.7c¢). [

Using Calculators and Computers to Estimate Limits

Tables 2.1 and 2.2 illustrate using a calculator or computer to guess a limit numerically as
x gets closer and closer to x(. That procedure would also be successful for the limits of
functions like those in Example 7 (these are continuous functions and we study them in
Section 2.6). However, calculators and computers can give false values and misleading im-
pressions for functions that are undefined at a point or fail to have a limit there. The differ-
ential calculus will help us know when a calculator or computer is providing strange or
ambiguous information about a function’s behavior near some point (see Sections 4.4 and
4.6). For now, we simply need to be attentive to the fact that pitfalls may occur when using
computing devices to guess the value of a limit. Here’s one example.

EXAMPLE 10  Guessing a Limit
Va2 + 100 — 10

2

Guess the value of lim
x—0 X

Solution  Table 2.3 lists values of the function for several values near x = 0. As x ap-
proaches 0 through the values +1, +£0.5, £0.10, and £+0.01, the function seems to ap-
proach the number 0.05.

As we take even smaller values of x, £0.0005, £0.0001, +0.00001, and £0.000001,
the function appears to approach the value 0.

So what is the answer? Is it 0.05 or 0, or some other value? The calculator/computer
values are ambiguous, but the theorems on limits presented in the next section will con-
firm the correct limit value to be 0.05(2 1/20). Problems such as these demonstrate the
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A/ y2 _
TABLE 2.3 Computer values of f(x) = w Nearx = 0
X
x )
41 0.049876
+0.5 0.049969
hes 0.052
+0.1 0.049999 [ APProaches 0.05
+0.01 0.050000
+0.0005 0.080000
+0.0001 0.000000 (
+0.00001 0.000000 [ PP :
+0.000001  0.000000

81

power of mathematical reasoning, once it is developed, over the conclusions we might
draw from making a few observations. Both approaches have advantages and disadvan-
tages in revealing nature’s realities.
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Limits from Graphs

1. For the function g(x) graphed here, find the following limits or
explain why they do not exist.
a. lim g(x)
x—1

b. lim g(x) c. lim g(x)
x—2 x—3

2. For the function f(#) graphed here, find the following limits or ex-
plain why they do not exist.

a. lim f(z) b. lim f(7) c. lim f(z)
t——2 ——1 =0

s =[0)
5 I I ¢
/oN -1 0 1

3. Which of the following statements about the function y = f(x)
graphed here are true, and which are false?

a. lin}) f(x) exists.
x—

b. lim f(x) = 0.
x—0

c. lim f(x) = 1.
x—0

d. lim f(x) = 1.
x—1

e. lim f(x) = 0.
x—1

f. lim f(x) exists at every point x in (=1, 1).
X=X

4. Which of the following statements about the function y = f(x)
graphed here are true, and which are false?

a. lim2 f(x) does not exist.
x—)

b. lim f(x) = 2.
x—2
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c. lim1 f(x) does not exist.
X

d. lim f(x) exists at every point xo in (=1, 1).
X—>Xxo

e. lim f(x) exists at every point x¢ in (1, 3).

X—>X(

y =/

Existence of Limits
In Exercises 5 and 6, explain why the limits do not exist.

5. lim 6. lim
x—0 |x] =1 x — 1

7. Suppose that a function f(x) is defined for all real values of x ex-
cept x = x9. Can anything be said about the existence of
lim, ., f(xx) ? Give reasons for your answer.

8. Suppose that a function f(x) is defined for all x in [—1, 1]. Can
anything be said about the existence of lim,—q f(x)? Give rea-
sons for your answer.

9. If limy—; f(x) = 5, must f be defined at x = 1? If it is, must
f(1) = 5?2 Can we conclude anything about the values of f at
x = 1? Explain.

10. If f(1) = 5, must lim,— f(x) exist? If it does, then must
lim,—1 f(x) = 5? Can we conclude anything about lim,—; f(x)?
Explain.

Estimating Limits

You will find a graphing calculator useful for Exercises 11-20.

&

Exercise

11. Let f(x) = (x> — 9)/(x + 3).
a. Make a table of the values of f at the points x = —3.1,
—3.01, —3.001, and so on as far as your calculator can go.
Then estimate lim,—_3 f(x). What estimate do you arrive at if
you evaluate f at x = —2.9, —2.99, —2.999, ... instead?
b. Support your conclusions in part (a) by graphing f near
xo = —3 and using Zoom and Trace to estimate y-values on
the graph as x — —3.
¢. Find lim,—_3 f(x) algebraically, as in Example 5.
12. Letg(x) = (x% — 2)/<x - \6) .
a. Make a table of the values of g at the points x = 1.4, 1.41,
1.414, and so on through successive decimal approximations
of /2. Estimate lim,—\/2 g(x).

b. Support your conclusion in part (a) by graphing g near

Xo = V2 and using Zoom and Trace to estimate y-values on
the graph as x — V2.

¢. Find lim,—+/; g(x) algebraically.

13.

14.

15.

16.

17.

18.

19.

Let G(x) = (x + 6)/(x* + 4x — 12).

a. Make a table of the values of G at x = —5.9, —5.99, —5.999,
and so on. Then estimate lim,—_g G(x). What estimate do you
arrive at if you evaluate G at x = —6.1, —6.01, —6.001, ...
instead?

b. Support your conclusions in part (a) by graphing G and
using Zoom and Trace to estimate y-values on the graph
as x — —6.

c. Find lim,—_¢ G(x) algebraically.
Let h(x) = (x2 — 2x — 3)/(x* — 4x + 3).

a. Make a table of the values of 7 at x = 2.9,2.99, 2.999, and so
on. Then estimate lim,—3 A(x). What estimate do you arrive
at if you evaluate # at x = 3.1, 3.01, 3.001, ... instead?

b. Support your conclusions in part (a) by graphing / near
xo = 3 and using Zoom and Trace to estimate y-values on the
graph as x — 3.

¢. Find lim,—3 A(x) algebraically.
Let f(x) = (x* — 1)/(]x] — 1).

a. Make tables of the values of f at values of x that approach
xo = —1 from above and below. Then estimate lim,—_; f(x).

b. Support your conclusion in part (a) by graphing f near
Xo = —1 and using Zoom and Trace to estimate y-values on
the graph as x — —1.

¢. Find lim,—_; f(x) algebraically.
Let F(x) = (x? + 3x + 2)/(2 — |x|).

a. Make tables of values of F at values of x that approach
Xo = —2 from above and below. Then estimate lim,—._, F(x).

b. Support your conclusion in part (a) by graphing F near
Xo = —2 and using Zoom and Trace to estimate y-values on
the graph as x — —2.

c. Find lim,——, F(x) algebraically.
Let g(0) = (sin6)/6.

a. Make a table of the values of g at values of 6 that approach
0o = 0 from above and below. Then estimate limg—q g(6).

b. Support your conclusion in part (a) by graphing g near
00 =0.

Let G(t) = (1 — cost)/#%.

a. Make tables of values of G at values of ¢ that approach z, = 0
from above and below. Then estimate lim,—q G(¢).

b. Support your conclusion in part (a) by graphing G near
th=0.

Let f(x) = PAU

a. Make tables of values of f at values of x that approach x, =
from above and below. Does f appear to have a limit as
x — 17 If so, what is it? If not, why not?

b. Support your conclusions in part (a) by graphing f near
Xo = 1.
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20. Let f(x) = (3* — 1)/x.

a. Make tables of values of f at values of x that approach xo = 0
from above and below. Does f appear to have a limit as
x — 07 If so, what is it? If not, why not?

b. Support your conclusions in part (a) by graphing f near
Xo = 0.

Limits by Substitution

In Exercises 21-28, find the limits by substitution. Support your an-
swers with a computer or calculator if available.

21. lim 2x 22. lim 2x
x—2 x—0
. . -1
23. 1 3x — 1 24, lim ————
(i, Gx = 1) S Gr— 1)
. . 3x?
25. xll}El 3x(2x — 1) 26. xlinll p—
27. lim xsinx 28. lim 2%
x—/2 e

Average Rates of Change

In Exercises 29-34, find the average rate of change of the function
over the given interval or intervals.

29, f(x) = x> + I;
a. [2,3] b [-1,1]
30. g(x) = x?;
a. [-1,1] b. [-2,0]
31. h(t) = cott;
a. [7/4,37/4] b. [7/6, 7/2]
32. g(t) = 2 + cost;
a. [0,7] b. [—m, 7]
33. R(6) = V46 + 1; [0,2]

34. P(9) = 6° — 46° + 50; [1,2]

a. Estimate the slopes of secants PQ;, PQ,, PQ;, and PQy,
arranging them in order in a table like the one in Figure 2.3.
What are the appropriate units for these slopes?

b. Then estimate the Cobra’s speed at time ¢t = 20 sec.

36. The accompanying figure shows the plot of distance fallen versus
time for an object that fell from the lunar landing module a dis-
tance 80 m to the surface of the moon.

a. Estimate the slopes of the secants PQ,, PQ,, PO, and PQu,
arranging them in a table like the one in Figure 2.3.

b. About how fast was the object going when it hit the surface?

y
80 0 P
4
g 60 /
5 7
= 0,
S 40
o]
g 20 y
[a) 1 .
0 5 10

Elapsed time (sec)

37. The profits of a small company for each of the first five years of
its operation are given in the following table:

Year Profit in $1000s
1990 6
1991 27
1992 62
1993 111
1994 174

a. Plot points representing the profit as a function of year, and
join them by as smooth a curve as you can.

35. A Ford Mustang Cobra’s speed The accompanying figure
shows the time-to-distance graph for a 1994 Ford Mustang Cobra
accelerating from a standstill.

N

650 »
600 /

500 7

400

300

Distance (m)

0
200 /"‘
100

4

0 5 10 15 20
Elapsed time (sec)

b. What is the average rate of increase of the profits between
1992 and 19947

c¢. Use your graph to estimate the rate at which the profits were
changing in 1992.

Make a table of values for the function F(x) = (x + 2)/(x — 2)

at the points x = 1.2, x = 11/10,x = 101/100, x = 1001/1000,

x = 10001/10000, and x = 1.

a. Find the average rate of change of F(x) over the intervals
[1, x] for each x # 1 in your table.

38.

b. Extending the table if necessary, try to determine the rate of
change of F(x)atx = 1.

Let g(x) = Vi forx = 0.

a. Find the average rate of change of g(x) with respect to x over
the intervals [1, 2], [1, 1.5] and [1, 1 + A].

b. Make a table of values of the average rate of change of g with
respect to x over the interval [1, 1 + /] for some values of

39.
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84 Chapter 2: Limits and Continuity

approaching zero, say 2 = 0.1, 0.01, 0.001, 0.0001, 0.00001,
and 0.000001.

d. Calculate the limit as T approaches 2 of the average rate of
change of f with respect to 7 over the interval from 2 to 7. You

Exercise will have to do some algebra before you can substitute 7 = 2.

c. What does your table indicate is the rate of change of g(x)

d.

with respecttox atx = 17?

Calculate the limit as / approaches zero of the average rate of
change of g(x) with respect to x over the interval [1, 1 + A].

40. Let f(¢) = 1/tfort # 0.

COMPUTER EXPLORATIONS

Graphical Estimates of Limits
In Exercises 41-46, use a CAS to perform the following steps:

a. Plot the function near the point x, being approached.

a. Find the average rate of change of f with respect to z over the
intervals (i) fromz = 2 to r = 3, and (ii) from ¢ = 2 to b. From your plot guess the value of the limit.
t=T. . x*—16 o ooxP—x?2—5x-3
. 41. lim ———— 42, lim ————
b. Make a table of values of the average rate of change of f with x—2 X — 2 x——1 (x + 1)
respect to ¢z over the interval [2, 7], for some values of T’ m -1 2 _ 9
approaching 2, say T = 2.1, 2.01, 2.001, 2.0001, 2.00001, 43. lim ~———— 44, lim — = ——
and 2.000001. 0 P Vx T
¢. What does your table indicate is the rate of change of f with 45. lim w 46. lim R —
x—0 Xsinx x—0 3 — 3cosx

respecttozats = 27?
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84 Chapter 2: Limits and Continuity

Calculating Limits Using the Limit Laws

HISTORICAL ESSAY* In Section 2.1 we used graphs and calculators to guess the values of limits. This section
presents theorems for calculating limits. The first three let us build on the results of Exam-
ple 8 in the preceding section to find limits of polynomials, rational functions, and powers.
The fourth and fifth prepare for calculations later in the text.

Limits

The Limit Laws

The next theorem tells how to calculate limits of functions that are arithmetic combina-
tions of functions whose limits we already know.

THEOREM 1 Limit Laws
If L, M, ¢ and k are real numbers and

lim f(x) = L and lim g(x) = M, then
x—c x—c
1. Sum Rule: lln(f(x) +glx)=L+M
The limit of the sum of two functionsxis tche sum of their limits.
2. Difference Rule: lln(f(x) —gx)=L—-M
The limit of the difference of two funztiocns is the difference of their limits.

3. Product Rule: lim(f(x)-gx)) =L-M
Xx—>c

The limit of a product of two functions is the product of their limits.

To learn more about the historical figures and the development of the major elements and topics of calcu-
lus, visit www.aw-bc.com/thomas.
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4. Constant Multiple Rule: lim(k- f(x)) = k- L

The limit of a constant times a function is the constant times the limit of the
function.

lim 1) _L
a—e gx) M
The limit of a quotient of two functions is the quotient of their limits, provided
the limit of the denominator is not zero.

5. Quotient Rule: M #0

6. Power Rule: If r and s are integers with no common factor and s # 0, then
lim (f(x))* = L'
xX—c

provided that L’ is a real number. (If s is even, we assume that L > 0.)

The limit of a rational power of a function is that power of the limit of the func-
tion, provided the latter is a real number.

It is easy to convince ourselves that the properties in Theorem 1 are true (although
these intuitive arguments do not constitute proofs). If x is sufficiently close to ¢, then f(x)
is close to L and g(x) is close to M, from our informal definition of a limit. It is then rea-
sonable that f(x) + g(x) is close to L + M; f(x) — g(x) is close to L — M; f(x)g(x) is
close to LM; kf(x) is close to kL; and that f(x)/g(x) is close to L/M if M is not zero. We
prove the Sum Rule in Section 2.3, based on a precise definition of limit. Rules 2—5 are
proved in Appendix 2. Rule 6 is proved in more advanced texts.

Here are some examples of how Theorem 1 can be used to find limits of polynomial
and rational functions.

EXAMPLE 1  Using the Limit Laws

Use the observations lim,—. k = k and lim,—..x = ¢ (Example 8 in Section 2.1) and the
properties of limits to find the following limits.

4 2
@) lm(® + 4> —3)  (b) lim % © lim V& =3
xX—c X—>—

x—=c X 5
Solution
(a) lim(x3 + 4x? — 3) = lim x> + lim 4x? — lim 3 Sum and Difference Rules
x—c x—c x—c x—c
= C3 + 462 -3 Product and Multiple Rules

lim(x* + x2 = 1)

4 2 1

(b) lim 2l +2x L_» C. 3 Quotient Rule
x—c  x*+ 5 lim(x* + 5)

xX—c

lim x* + lim x2 — lim 1

x—c x—c x—c o
= - 3 - Sum and Difference Rules
lim x“ + lim 5
xX—c xX—c
ct+ -1
=% L Power or Product Rule
cc+5
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86 Chapter 2: Limits and Continuity

() limz\/4x2 -3= \/ lim2(4x2 - 3) Power Rule with r/s = '/

= \/ lim 4)C2 — lim 3 Difference Rule

= 4(_2)2 -3 Product and Multiple Rules
= \/E ]

Two consequences of Theorem 1 further simplify the task of calculating limits of polyno-
mials and rational functions. To evaluate the limit of a polynomial function as x ap-
proaches ¢, merely substitute ¢ for x in the formula for the function. To evaluate the limit
of a rational function as x approaches a point ¢ at which the denominator is not zero, sub-
stitute ¢ for x in the formula for the function. (See Examples la and 1b.)

THEOREM 2 Limits of Polynomials Can Be Found by Substitution

If P(x) = a,x" + ay1x"~' + --- + ay, then
lim P(x) = P(¢) = aye" + a—1¢" "+ -+ + ag.
xX—>c

THEOREM 3 Limits of Rational Functions Can Be Found by Substitution
If the Limit of the Denominator Is Not Zero

If P(x) and Q(x) are polynomials and Q(c) # 0, then
LPW) PO
e 0() — 0(e)

EXAMPLE 2  Limit of a Rational Function

BAar—3 (1P +4-1-3 o

Video lim . - . -9_y
=1  x*+5 (=1 +5 6
This result is similar to the second limit in Example 1 with ¢ = —1, now done in one step.
|
| Identifying Common Factors Eliminating Zero Denominators Algebraically

It can be shown that if O(x) is a Theorem 3 applies only if the denominator of the rational function is not zero at the limit
pOlynom}al and O(c) = 0, then ) point c. If the denominator is zero, canceling common factors in the numerator and de-
(x = ¢} is a factor of O(x). Thus, if nominator may reduce the fraction to one whose denominator is no longer zero at c. If this

the numerator and denominator of a
rational function of x are both zero at

x = ¢, they have (x — ¢) as a common
factor.

happens, we can find the limit by substitution in the simplified fraction.

EXAMPLE 3  Canceling a Common Factor ' '
Ii | Evaluate Ii Ii1
Video Video

. 2 —
Video lim XX 2
=1 x* —x
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-
Video ®)

FIGURE 2.8 The graph of

f(x) = (x* + x — 2)/(x* — x)in
part (a) is the same as the graph of
g(x) = (x + 2)/x in part (b) except
atx = 1, where f is undefined. The
functions have the same limit as x — 1
(Example 3).

2.2 Calculating Limits Using the Limit Laws 87

Solution ~ We cannot substitute x = 1 because it makes the denominator zero. We test the
numerator to see if it, too, is zero at x = 1. It is, so it has a factor of (x — 1) in common
with the denominator. Canceling the (x — 1)’s gives a simpler fraction with the same val-
ues as the original for x # 1:

x2+x—2:(x_1)(x+2)_x+2

= ifx # 1.
x2 - x x(x—l) roo ne

Using the simpler fraction, we find the limit of these values as x — 1 by substitution:

X2+ x-=2 .
lim 5 = lim
x—1 X —Xx x—1

x+2 1+2
X - 1 -

3.

See Figure 2.8. [

EXAMPLE 4  Creating and Canceling a Common Factor

Evaluate
. Vx?+100 — 10
lim 3 .
x—0 X

Solution  This is the limit we considered in Example 10 of the preceding section. We
cannot substitute x = 0, and the numerator and denominator have no obvious common
factors. We can create a common factor by multiplying both numerator and denominator
by the expression Vx? + 100 + 10 (obtained by changing the sign after the square root).
The preliminary algebra rationalizes the numerator:

Va? +100 = 10 _ Va® + 100 — 10 Vx> + 100 + 10
x? x? VX2 + 100 + 10

x2 + 100 — 100

(Vx4 100 + 10)

2

X
x*(Vx? + 100 + 10)
B 1
VX2 + 100 + 10

~ . 2
Common factor x~

Cancel x? forx # 0

Therefore,

Vx2 + 100 — 10

lim = lim

2
Denominator

1
x—0 X x—0 m + 10
1 not 0 atx = 0;
V0% + 100 + 10 substitute

_ 1 _
=50 = 0.05.

This calculation provides the correct answer to the ambiguous computer results in Exam-
ple 10 of the preceding section. [

The Sandwich Theorem

The following theorem will enable us to calculate a variety of limits in subsequent chap-
ters. It is called the Sandwich Theorem because it refers to a function f whose values are
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y sandwiched between the values of two other functions g and 4 that have the same limit L at
a point c. Being trapped between the values of two functions that approach L, the values of
f must also approach L (Figure 2.9). You will find a proof in Appendix 2.

THEOREM 4 The Sandwich Theorem

Suppose that g(x) = f(x) = h(x) for all x in some open interval containing c,
except possibly at x = c itself. Suppose also that

lim g(x) = lim A(x) = L.
xX—c x—>c

FIGURE 2.9 The graph of f is Then lim,—. f(x) = L.
sandwiched between the graphs of g and 4.

The Sandwich Theorem is sometimes called the Squeeze Theorem or the Pinching Theorem.

EXAMPLE 5  Applying the Sandwich Theorem

Given that

x2

2

2
l—xZSu(x)Sl—F forallx # 0,

find lim,—( u(x), no matter how complicated u is.

Solution  Since

FIGURE 2.10 Any function u(x) lir%(l — (x2/4)) =1 and lirr%)(l + (x2/2)) =1,
xX—> xX—>

whose graph lies in the region between

- 2 — ] — (2 ) o : .
y=1+ (@%/2)and y =1 = (x*/4)has ¢pe Sandwich Theorem implies thatlim,—q u(x) = 1 (Figure 2.10). m
limit 1 as x — 0 (Example 5).

EXAMPLE 6  More Applications of the Sandwich Theorem

(a) (Figure 2.11a). It follows from the definition of sin 6 that —|6| = sinf = |6|forall 6,
and since limy—( (—|0]) = limy—(|6| = 0, we have

lim sinf = 0.

6—0
y
y=|9|
1L y=sinf
N 6 1 1
- JiS -2 -1
“1F y=-l6l (b)

FIGURE 2.11 The Sandwich Theorem confirms that (a) limy—(sin 6 = 0 and
(b) limg—o (1 — cos §) = 0 (Example 6).
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2.2 Calculating Limits Using the Limit Laws 89

(b) (Figure 2.11b). From the definition of cos #,0 = 1 — cos @ = || for all §, and we
have limg—o (1 — cos) = 0 or

lim cos® = 1.

0—0
(¢) For any function f(x), if limy—.|f(x)| = 0, then lim,—. f(x) = 0. The argument:
—|fx)] = f(x) = |f(x)| and — | f(x)| and | f(x)| have limit 0 as x — c. ]

Another important property of limits is given by the next theorem. A proof'is given in
the next section.

THEOREM 5 If f(x) = g(x) forallx in some open interval containing c, except
possibly at x = ¢ itself, and the limits of f and g both exist as x approaches c,
then

lim f(x) < lim g(x).
Xx—c Xx—>c

The assertion resulting from replacing the less than or equal to = inequality by the strict
< inequality in Theorem 5 is false. Figure 2.1la shows that for 6 # 0,
—|6] < sin@ < |6, but in the limit as # — 0, equality holds.
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Exercise

EXERCISES 2.2

Limit Calculations

Find the limits in Exercises 1-18.

2.2 Calculating Limits Using the Limit Laws

89

Find the limits in Exercises 19-36.

1. 1im7(2x +5)
3. lim(—x% + 5x — 2)
x—2
5. lin% 8(t —5)(t—17)
[—)
i XT3
: x—2 X + 6
2
9. 1
y—l>n25 5=y
11. hm1 32x — 1)?

13. lim (5 — )3

15. lim ————

h—’o\/3h+ 1+1
. V3h+1-1
17. lim == ———

N

10.

12.

14.

16.

18.

lim (10 — 3

Aim, (10 = 3x)

lim (x> — 2x2 + 4x + 8)
x—>-2

lim 3s(2s — 1)

s—>2/'
’ xh—IPS x =17
y+2
lim

y—=2 y +5y+6
lim (x + 3)1084

x—>—4

llm (2z — 8)'73

lim ———

h=0 \/Sh +4+2
. V5h+4-2
fm

19.

21.

23.

25S.

27.

29.

31.

33.

. -5

lim B
x—5 x° — 25

lim x>+ 3x— 10
x—-5 x + 5
P24 t=2

lim ————
=1 7 =1

lim 2 —4
x—>-2 x3 + 2x?

20.

22.

24.

x + 3
llmi
x—>-3 x2 4+ 4x + 3

2+ 3t+2
m =5

t—>=1 t°— ¢t —2
5y3-i-8y2

26. lim

28.

30.

32.

34.

y—0 3y* — 162
. v -8
lim 1
v=>2 vt — 16
. 4y — x?
lim

=49 —\/x

xl—l>n—l1 x +1

x+2

lim ————
2V/x? +5 -3

Vx> +8—3
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90 Chapter 2: Limits and Continuity

_ 2 _ _
35, lim 2 Y% =3 36. lim — 2+ X

x—-3 x+3 x~>457\/x2+9

Exercise

Using Limit Rules

37. Suppose lim,—o f(x) = 1 and lim,—g(x) = —5. Name the
rules in Theorem 1 that are used to accomplish steps (a), (b), and
(c) of the following calculation.

2() — ) Nm I — £()

0 (f) + 7P lim (f(x) + 7) @
lim 2f(x) — lim g(x)
_ x—0 x—0 (b)
(tim (70 + 7))
_ 2 lim f) — lim g() N
(lim f0o) + lim 7)27
_OW =9 7
(1+7)% 4

38. Let lim,—; A(x) = 5, lim,—; p(x) = 1, and lim,—;r(x) = 2.
Name the rules in Theorem 1 that are used to accomplish steps
(a), (b), and (c) of the following calculation.

0@ — ) Tim (p(0)@ — 7(x))
= = (b)
(1im p(o))(lim (4 = r(x)))

V5 liml h(x)
= = ©

(Jim p(x))(fim 4 — tim r(x)

V()5 s

T (W@ -2) 2

(2)

39. Suppose lim,—. f(x) = 5 and lim,—. g(x) = —2. Find
a. lim f(x)g(x) b. lim 2f(x)g(x)
xX—c X—c
. f(x)
d. lim ———-—
x—=c f(x) — g(x)
40. Suppose lim,—4 f(x) = 0 and lim,—4 g(x) = —3. Find
a. lim (g(x) + 3) b. lim xf(x)
x—4 x—4

e. lim (£(x) + 3g(x)

) g(x)
d- lim oy — 1

41. Suppose lim,—; f(x) = 7 and lim,—, g(x) = —3. Find
a. lim (f(x) + g(x)) b. lim f(x) -g(x)
¢. lim dg(x) d. lim f(x)/g(x)

c. lim (g(x))?

42. Suppose that lim,—_, p(x) = 4, lim,——, r(x) = 0, and
lim,—_» s(x) = —3. Find

a. inlz (p(x) + r(x) + s(x))
b. l_i)n_l2 plx) - r(x) - s(x)
c. E)njz(—4p(x) + 5r(x))/s(x)

Limits of Average Rates of Change

Because of their connection with secant lines, tangents, and instanta-
neous rates, limits of the form

fx +h) — flx)
mi== J
h—0 h

occur frequently in calculus. In Exercises 43—48, evaluate this limit
for the given value of x and function f.

43. f(x) =x%, x=1 4. f(x) =x%, x= -2
45. f(x) =3x— 4, x=2 46. f(x) = 1/x, x = -2
47. fx) = Vx, x=7 48. f(x) = V3x+1, x=0

Using the Sandwich Theorem

49. If V5 — 2x* = f(x) = V5 —x2for—1 = x = 1, find
limxﬁo f(x)

50. If2 — x? = g(x) = 2 cosx for all x, find lim,— g (x).

51. a. It can be shown that the inequalities

2 .
| X xsinx
6 2 — 2cosx

hold for all values of x close to zero. What, if anything, does
this tell you about
T
Give reasons for your answer.
. Graph
y=1-(x%/6),y = (xsinx)/(2 — 2cosx), andy = 1

together for —2 = x = 2. Comment on the behavior of the
graphs as x = 0.

52. a. Suppose that the inequalities
1 x? 1 —cosx 1
2" %< e <2

hold for values of x close to zero. (They do, as you will see in
Section 11.9.) What, if anything, does this tell you about

.1 — cosx
lim 72?
x—0 X

Give reasons for your answer.
b. Graph the equations y = (1/2) — (x2/24),

y = (1 — cosx)/x?,and y = 1/2 together for —2 < x =< 2.
Comment on the behavior of the graphs as x — 0.
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2.2 Calculating Limits Using the Limit Laws 91

x
Theory and Examples a lim () b lim f(x)
53. If x* = f(x) = x? for x in [—1,1] and x?> = f(x) = x* for X2 =2
x < —1l and x > 1, at what points ¢ do you automaticall){ kpow 57. a. If lim fx) =5 = 3, find lim f(x).
lim,—. f(x)? What can you say about the value of the limit at =2 x =2 x—2
ints? x)—5
these points? b. If lim % — 4, find lim f(x).
54. Suppose that g(x) = f(x) = h(x) for all x # 2 and suppose that X2 X x—2
. , e J0
lim glx) = lim h(x) = 5. 58. If lim 2 1, find
Can we conclude anything about the values of f, g, and 4 at a. lim f(x) b. lim @
x = 27? Could f(2) = 0? Could lim,—, f(x) = 0? Give reasons =0 x—0
for your answers. 59. a. Graph g(x) = xsin(1/x) to estimate lim,—( g(x), zooming
C fx) -5 ' . in on the origin as necessary.
35 If)}l_r)r}‘ x—2 L, find ,}EB; ). b. Confirm your estimate in part (a) with a proof.
o fx i 60. a. Graph A(x) = x%cos (1/x3) to estimate lim,—. A(x) , zooming
56. If Xl_l)fﬂz 2 1, find in on the origin as necessary.

b. Confirm your estimate in part (a) with a proof.
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The Precise Definition of a Limit

To satisfy
this

y=2x—-1

Upper bound:
y=9

/

Lower bound:
y=>5

|
|
|
|
]
(!
[
[
[
[
[ 4|
345
N

Restrict
to this

0

FIGURE 2.12 Keeping x within 1 unit
of xo = 4 will keep y within 2 units of
yo = 7 (Example 1).

Now that we have gained some insight into the limit concept, working intuitively with the
informal definition, we turn our attention to its precise definition. We replace vague
phrases like “gets arbitrarily close to” in the informal definition with specific conditions
that can be applied to any particular example. With a precise definition we will be able to
prove conclusively the limit properties given in the preceding section, and we can establish
other particular limits important to the study of calculus.

To show that the limit of f(x) as x — xj equals the number L, we need to show that the gap
between f(x) and L can be made “as small as we choose” if x is kept “close enough” to xg.
Let us see what this would require if we specified the size of the gap between f(x) and L.

EXAMPLE 1 A Linear Function

Consider the function y = 2x — 1 near xo = 4. Intuitively it is clear that y is close to 7
when x is close to 4, so lim,—4 (2x — 1) = 7. However, how close to xo = 4 does x have
to be so that y = 2x — 1 differs from 7 by, say, less than 2 units?

Solution ~ We are asked: For what values of x is |y — 7| < 2? To find the answer we
first express |y — 7| in terms of x:
ly =7|=]2x —1) = 7| =|2x — 8.

The question then becomes: what values of x satisfy the inequality |2x — 8] < 2? To
find out, we solve the inequality:

[2x — 8] <2
—2<2x—8<2
6 <2x <10
3<x <5

—1<x—-4<1.

Keeping x within 1 unit of xg = 4 will keep y within 2 units of yo = 7 (Figure 2.12). m
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y
A
@ f(x)
f(x) lies
L in here
L %\/
for all x # x,
in here
1) o)
X
— X
0 Xp—0 X9 Xxo+06

FIGURE 2.13 How should we define
6 > 0 so that keeping x within the
interval (xo — 68, xo + &) will keep f(x)

o . 1 1
_ = N )
within the interval (L 10° L+ 1 O) ?

y
L+eT
f(x) lies
L — .
¢ f() in here
L—€el
for all x # x
in here
) 8
e E—
X
0 e 3 x

Xg—0 Xy Xg+96

FIGURE 2.14 The relation of § and € in
the definition of limit.

In the previous example we determined how close x must be to a particular value x, to
ensure that the outputs f(x) of some function lie within a prescribed interval about a limit
value L. To show that the limit of f(x) as x — x actually equals L, we must be able to show
that the gap between f(x) and L can be made less than any prescribed error, no matter how
small, by holding x close enough to xj.

Definition of Limit

Suppose we are watching the values of a function f(x) as x approaches x, (without taking on
the value of x itself). Certainly we want to be able to say that f(x) stays within one-tenth of
a unit of L as soon as x stays within some distance & of x, (Figure 2.13). But that in itself is
not enough, because as x continues on its course toward x,, what is to prevent f(x) from jit-
tering about within the interval from L — (1/10) to L + (1/10) without tending toward L?

We can be told that the error can be no more than 1/100 or 1/1000 or 1/100,000.
Each time, we find a new 8-interval about x so that keeping x within that interval satisfies
the new error tolerance. And each time the possibility exists that f(x) jitters away from L at
some stage.

The figures on the next page illustrate the problem. You can think of this as a quarrel
between a skeptic and a scholar. The skeptic presents e-challenges to prove that the limit
does not exist or, more precisely, that there is room for doubt, and the scholar answers
every challenge with a d-interval around xj.

How do we stop this seemingly endless series of challenges and responses? By prov-
ing that for every error tolerance e that the challenger can produce, we can find, calculate,
or conjure a matching distance 6 that keeps x “close enough” to xj to keep f(x) within that
tolerance of L (Figure 2.14). This leads us to the precise definition of a limit.

DEFINITION Limit of a Function

Let f(x) be defined on an open interval about x, except possibly at x itself. We
say that the limit of f(x) as x approaches x is the number L, and write

lim f(x) = L,

X—>X(

if, for every number € > 0, there exists a corresponding number 8 > 0 such that
for all x,

0<|x—x <6 = [f(x) — L| <e.

One way to think about the definition is to suppose we are machining a generator
shaft to a close tolerance. We may try for diameter L, but since nothing is perfect, we must
be satisfied with a diameter f(x) somewhere between L — € and L + €. The d is the
measure of how accurate our control setting for x must be to guarantee this degree of accu-
racy in the diameter of the shaft. Notice that as the tolerance for error becomes stricter, we
may have to adjust 6. That is, the value of 6, how tight our control setting must be, de-
pends on the value of €, the error tolerance.

Examples: Testing the Definition

The formal definition of limit does not tell how to find the limit of a function, but it en-
ables us to verify that a suspected limit is correct. The following examples show how the
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. y=f(X)/ y—f@y y=f()7
L+ 1 1

| —_— —_
| L+ 100 L+ 100 ,
|
L——— g | L= LF———-§8 :
|
] 1 1 |
|
|
|
|
Il

I I I
Il 1
L1 l L =100 : L =100 o
10 ; | Lo
| | | |
X 1 I x / I x / | : I x
0 Xo 0 / Xo \ 0 Xo 0 X\
Xo = 81710 X0+ S1/10 Xo— 01100 X0+ /100
The challenge: Response: New challenge: Response:
Make | f(x) - L| <e=11—0 | x — x| < 811 (a number) Make | f(x) - L| <€=ﬁ) |x = x| < 81100
y y
y =1 y = f(x)
1
L 1000 L+ To00
—
e R — |
v T Y 1 1
1 I 1 (|
L‘1ooo/ | L= 1000 I:
I
| o
1 X / | I : x
0 o0 0 o
New challenge: Response:
_ 1
€= 1000 | x = x0| < 8111000
y y y
y = £ y =f@)
1 1
L+ 160,000 L 160,000
\
; == e
i
_1 I I |
L = 100,000 L= 100,000 | :
| |
i i
| |
/ X / 11 X | X
0 0 X0 0 X0
New challenge: Response: New challenge:
1
€= 100,000 | x = xo| < 817100000 €=

definition can be used to verify limit statements for specific functions. (The first two ex-
amples correspond to parts of Examples 7 and 8 in Section 2.1.) However, the real purpose
of the definition is not to do calculations like this, but rather to prove general theorems so
that the calculation of specific limits can be simplified.
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y=5x—7
2+ €

(3]
i
|
|
|
|
|
|
|
|
|
|
|
|

S}
|
m

— | —— — [——

1+

im

NOT TO SCALE

FIGURE 2.15 If f(x) = 5x — 3, then
0 < |x — 1] < €/5 guarantees that
[f(x) = 2| < e (Example 2).

y
y=x
Xog + €
Xg+ 6
IR |
X /I/:
Xg— 6 Tt
[
[
Xog — € [
[
[
[
[
1 L1
0 xg—8 xg xg+ 8

FIGURE 2.16 For the function f(x) = x,
we find that 0 < |x — xo| < & will
guarantee | f(x) — xo| < € whenever

6 = € (Example 3a).

EXAMPLE 2 Testing the Definition

Show that

Video
lim (5x — 3) = 2.
x—1
Solution  Setxp = 1, f(x) = 5x — 3, and L = 2 in the definition of limit. For any given
€ > 0, we have to find a suitable 6 > 0 so that if x # 1 and x is within distance & of
xo = 1, that is, whenever
0<|x—1] <8$,
it is true that f(x) is within distance € of L = 2, so
1100 — 2| <e.
We find 6 by working backward from the e-inequality:
[(5x —3) —2|=|5x — 5| <€
S5lx — 1] <e
[x — 1] < ¢€/5.
Thus, we can take 6 = €/5 (Figure 2.15). If 0 < |x — 1| < 6 = €/5, then
[(5x —3) — 2| =|5x — 5| =5]x — 1| < 5(e/5) = €,
which proves that lim,—;(5x — 3) = 2.
The value of 6 = €/5 is not the only value that will make 0 < |x — 1] < & imply
|5x — 5| < e. Any smaller positive 6 will do as well. The definition does not ask for a
“best” positive 0, just one that will work. ]
EXAMPLE 3  Limits of the Identity and Constant Functions Ii
Prove: .
Video
(a) lim x = xg (b) lim k= k (k constant).
XX XX
Solution

(a) Lete > 0 be given. We must find 6 > 0 such that for all x
0<|x—x <6 implies [x — xo| < e.

The implication will hold if § equals € or any smaller positive number (Figure 2.16).
This proves that lim, ., x = xp.

(b) Lete > 0 be given. We must find 6 > 0 such that for all x
0<|x—x| <6 implies |k — k| <e.

Since £ — k = 0, we can use any positive number for 6 and the implication will hold
(Figure 2.17). This proves thatlim, ., k = k. ]

Finding Deltas Algebraically for Given Epsilons

In Examples 2 and 3, the interval of values about x, for which | f(x) — L| was less than e
was symmetric about xy and we could take 6 to be half the length of that interval. When
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y such symmetry is absent, as it usually is, we can take 6 to be the distance from x to the in-
. terval’s nearer endpoint.
k+ € -
T EXAMPLE 4  Finding Delta Algebraically
[ C e . . .
[ ! For the limit lim,—~sVx — 1 = 2, find a 6 > 0 that works for € = 1. That is, find a
i l ! 8 > 0 such that for all x
|
R . 0<|x—5<8& = |Vx—-1-2|<1.
0 Xg—0 Xy xo+ 6

FIGURE 2.17  For the function f(x) = k&,  Solution =~ We organize the search into two steps, as discussed below.
we find that | f(x) — k| < e for any

positive  (Example 3b). 1. Solve the inequality |NVx — 1 — 2| < 1 to find an interval containing xo = 5 on

which the inequality holds for all x # xy.

IVx—1-2l<1
“1<Vx—-1-2<1
1< Vx—-1<3
I<x—-1<9
2 <x<10
The inequality holds for all x in the open interval (2, 10), so it holds for all x # 5 in
this interval as well (see Figure 2.19).

2. Find a value of 6 > 0 to place the centered interval 5 — 6 < x < 5 + & (centered
at xo = 5) inside the interval (2, 10). The distance from 5 to the nearer endpoint of
(2, 10) is 3 (Figure 2.18). If we take 6 = 3 or any smaller positive number, then the
inequality 0 < |x — 5| < & will automatically place x between 2 and 10 to make

|Vx — 1 — 2| <1 (Figure 2.19)

0<|x—5<3 = [Vx—-1-2| <1.

y
y=Vx—1
3 i
I
| I
| I
2-—-- . L
I | I
I | I
I | I
I | I
1 T T T
| I | I
I3 13 I
3 3 S E—— I
! L L & L L L ! L X A | | I | | I | I | x
2 5 8 10 o] 1 2 5 8 10
NOT TO SCALE
FIGURE 2.18 An open interval of
radius 3 about xo = 5 will lie inside the FIGURE 2.19 The function and intervals
open interval (2, 10). in Example 4. |
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y
4+€
]
]
|
4——— 2212, 4)
i
1
11
4 —€ bt
Lo
[
[
e 12,1
[
Pl
0 72\ !
4 —€ 4+€

FIGURE 2.20 An interval containing
x = 2 so that the function in Example 5
satisfies | f(x) — 4] < e.

How to Find Algebraically a 6 for a Given f, L, xo, and e > 0
The process of finding a 6 > 0 such that for all x

0<|x—x| <$é = |f(x) — L| <€
can be accomplished in two steps.

1. Solve the inequality |f(x) — L| < € to find an open interval (a, b) contain-
ing xo on which the inequality holds for all x # xg.

2. Find a value of 6 > 0 that places the open interval (xo — 8, xo + &) centered
at x¢ inside the interval (a, b). The inequality | f(x) — L| < e will hold for all
X # Xxg in this é-interval.

EXAMPLE 5  Finding Delta Algebraically
Prove that lim,—, f(x) = 4 if

x2, x#2
f(x)z{l, x=2

Solution  Our task is to show that given € > 0 there exists a 6 > 0 such that for all x
0<|x—2]<6é = [f(x) — 4] <ee.
1. Solve the inequality |f(x) — 4| < € to find an open interval containing xo = 2 on
which the inequality holds for all x # xy.
Forx # xo = 2,wehave f(x) = x?,and the inequality to solve is |x*> — 4| < e:
|x2 — 4| < e
—e<x*—4<e
4—e<x’<4+e

V4 —e < |x| < V4 + € Assumes € < 4; see below.
V4 —e<x< V4 +e. An open interval about xo = 2

that solves the inequality

The inequality |f(x) — 4| < € holds for all x # 2 in the open interval ( V4 — €,

V4 + e) (Figure 2.20).
2. Find a value of 8 > 0 that places the centered interval (2 — 8,2 + 8) inside the in-

terval(\/4 — €, V4 + e).

Take 6 to be the distance from xy = 2 to the nearer endpoint of ( V4 —€ V4 + e) .
In other words, take & = min {2 - V4 —-€V4+e— 2}, the minimum (the smaller)
of the two numbers 2 — V4 — eand V4 + € — 2. If § has this or any smaller positive
value, the inequality 0 < |x — 2| < § will automatically place x between V4 — € and
V4 + e tomake |f(x) — 4] < e.Forallx,

0<|x—2] <6 = |f(x) — 4] <e.

This completes the proof.
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Why was it all right to assume € < 4? Because, in finding a 6 such that for all
x,0 < |x — 2| < & implied |f(x) — 4| < € < 4, we found a & that would work for
any larger € as well.

Finally, notice the freedom we gained in letting 6 = min {2 — V4 — €,

V4 +e— 2} . We did not have to spend time deciding which, if either, number was the
smaller of the two. We just let 6 represent the smaller and went on to finish the argument.
]

Using the Definition to Prove Theorems

We do not usually rely on the formal definition of limit to verify specific limits such as
those in the preceding examples. Rather we appeal to general theorems about limits, in
particular the theorems of Section 2.2. The definition is used to prove these theorems
(Appendix 2). As an example, we prove part 1 of Theorem 1, the Sum Rule.

EXAMPLE 6  Proving the Rule for the Limit of a Sum
Given that lim,—.. f(x) = L and lim,—,. g(x) = M, prove that
lim‘(f(x) +gx) =L+ M.

Solution Let e > 0 be given. We want to find a positive number & such that for all x
0<|x—c| <$é = | f(x) + glx) — (L + M)| <e.
Regrouping terms, we get

/() + g(x) = (L + M)| = |(f(x) — L) + (g(x) — M)]|

Triangle Inequality:
= — — 2
=10 = L] + |g(x) = M|. la + b| =|a| + 5|

Since lim,—. f(x) = L, there exists a number 6; > 0 such that for all x
0<|x—rc|] <& = |f(x) — L| < e€/2.
Similarly, since lim,—. g(x) = M, there exists a number 8, > 0 such that for all x
0<|x—c| <& = lg(x) — M| < €/2.
Let 8 = min {8, 6,}, the smaller of §; and 6,. If0 < |x — ¢| < &then |x — ¢| < &y,
so |f(x) = L| < €/2,and |x — ¢| < 82,50 |g(x) — M| < €/2. Therefore

f0) + g) = L+ M| <5+ 5 =€

€
2
This shows that lim,—. (f(x) + g(x)) = L + M. (]

Let’s also prove Theorem 5 of Section 2.2.

EXAMPLE 7  Given that lim,—. f(x) = L and lim,—.. g(x) = M, and that f(x) = g(x)
for all x in an open interval containing ¢ (except possibly c itself), prove that L = M.

Solution =~ We use the method of proof by contradiction. Suppose, on the contrary, that
L > M. Then by the limit of a difference property in Theorem 1,
lim (g(x) = f(x)) = M — L.
Therefore, for any € > 0, there exists 8 > 0 such that
[(gx) = f(x)) =M —L)| <e whenever 0 < |x — ¢| < 8.
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Since L — M > 0 by hypothesis, we take € = L — M in particular and we have a number
6 > 0 such that

[(gx) — fx) —M—-L)| <L-M whenever 0 < |x — ¢| < 8.
Since a = |a|for any number a, we have
(gx) —fx) - M—-L)<L-M whenever 0 < [x —¢| <&
which simplifies to
g(x) < f(x) whenever 0 < |x — ¢| < 8.

But this contradicts f(x) = g(x). Thus the inequality L > M must be false. Therefore
L=M. u
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EXERCISES 2.3

Centering Intervals About a Point 9. 10.
In Exercises 1-6, sketch the interval (a, b) on the x-axis with the ) = ;/’_C y )= 2Vr 11
point xo inside. Then find a value of 6§ > 0 such that for all Y xLO;l xo=3
X, 0<|x—x| <8 = a<x<b. 1 L=4
5 €=3 Y= Vi €=02
1.a=1,b=7, Xo = 4_1- ____________ ’
2.a=1, b=17, x=2 1f—----- | " y=2Vx+1
3l __ I I 2
3.a=-7/2, b=-1/2, xp= -3 i T ! 3; ------- |
. | |
4. a=-7/2, b= -1/2, xo= —3/2 | ! ! Lo
5.a=4/9, b=4/7, xo=1/2 ; é i 2I5 . 2 Lo
6. a=27591, b=32391, xo=3 ic T i i i
o . . | | 1 x
Finding Deltas Graphically -1 0 261 3 341
In Exercises 7—14, use the graphs to finda & > 0 such that for all x NOTTO SCALE
11. 12.
0 < |x— x| <6 = [f(x) — L] <e. y
y
7. 8.
3 y [ = x? fw =4 =
J) =-35x+3 xp =2 Y=
2 0 L=
ﬁ - ‘1‘ €e=025 }
=4 —x 3
_ 2 Sb————— y
y=x |
7.65 4 & For=m =275
| 75 3= | | -
[
0 75N ! | T L] |
4.9 5.1 : 0 ) x : :
NOT TO SCALE | V3 Vs Lo
: NOT TO SCALE : :
’ . |
/=3 N\ 0 [
31 29 N\ 51 vz o
NOT TO SCALE 2 2
NOT TO SCALE
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A 13. 14. More on Formal Limits
Exercise y y Each of Exercises 31-36 gives a function f(x), a point xo, and a posi-
tive number €. Find L = lim f(x). Then find a number § > 0 such
fx) = % that for all x !
501 x0=% 0<|x—x| <6$6 = [fx) — L] <e.
el L=2
c— 001 31. f(x) =3 — 2x, X0 = 3, e =0.02
2F——-71 32. f(x) = —3x — 2, X0 = —1, € =0.03
_x—4 _ _
1.99 --h) 33. flx) = T N=2 € = 0.05
b
[ 2
o M) =TS = o5 =005
.
R 3. /) =V1-5 x=-3 e=05
i P 36. f(x) =4/x, x =2 e=04
[
i | Prove the limit statements in Exercises 37-50.
Pl
L1 : _ — : _ _
. 0 1/ 1 \1 x 37. gl_r)r}‘(9 x) =75 38. )}1_1313(3x 7) =2
201 2 199 39. limVx —5=2 40. imV4 —x =2
NOT TO SCALE x=9 x=0

2
41 lim f(x) =1 if f(x) = {x »  x#1

. . . x—1 2, x =1
Finding Deltas Algebraically . . 2 x# -2
Each of Exercises 15-30 gives a function f(x) and numbers L, x, and 42. xl_l,n_12 fx) =4 if fix) = {1 Y= -2
€ > 0. In each case, find an open interval about x(, on which the in- ’

equality |f(x) — L| < € holds. Then give a value for § > 0 such 43. lim~ = 1

that for all x satisfying 0 < |x — xo| < & the inequality =1
|f(x) — L] < €holds. . 1 1
44. lim- — =7
15 fx) =x+1, L=5 x=4  €=00l =V3x? 3
2 _ 2 _
Brercises| |10+ /) =2x 2, L=-6 x=-2  €=002 45, lim T2 — ¢ 46, 1im © =L =
17. f) = Vx+1, L=1 x=0, e=01 3 =l
4 -2 <1
18. fx) = Vx, L=1/2, xo=1/4, e=0.1 47. lim f(x) =2 if f(x) = { S
x—1 6x — 4, x=1
19. f(x) = V19 — x, L =3, xo = 10, e=1 I <0
20. f(x) = Vx—17, L=4, x=23, €= 48. lim f(x) =0 if f(x)={x/’2 =0
21. f(x) = 1/x, L =1/4, X0 = 4, e =0.05 1
49. i iny =0
2. fx)=x% L=3 x=V3 e=01 oty R
23. f(x) =x? L=4, x=-2, €=05 Y
24. f(x) = 1/x, L= -1, X0 = —1, e =0.1
25. f(x) =x>—=5 L=11, x=4  e=1
26. f(x) = 120/x, L=5 x=24, e=1 |
_ _ _ _ 1 1 y =)CSIHE
27. f(x) = mx, m >0, = 2m, X0 = 2, e =0.03 -5 5
T, T
28. f(x) = mx, m > 0, L = 3m, X0 = 3, 1) 0 X
e=c>0 T T
29. f(x) = mx + b, m > 0, L = (m/2) + b,
xo = 1/2, e=c>0
30. f(x) = mx + b, m >0, L=m+b, xo =1,
e = 0.05
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100 Chapter 2: Limits and Continuity

50.

lim x? sin% =0

x—0

Theory and Examples

51.
52.
53.

54.

55,

56.

Define what it means to say that lin}) g(x) = k.
Xx—>
Prove that lim f(x) = L if and only ifhlin}) f(h+c¢)=1L.
xX—>c g
A wrong statement about limits Show by example that the fol-
lowing statement is wrong.

The number L is the limit of f(x) as x approaches xy if f(x) gets
closer to L as x approaches x.

Explain why the function in your example does not have the given
value of L as a limit as x — xy.

Another wrong statement about limits Show by example that
the following statement is wrong.

The number L is the limit of f(x) as x approaches x if, given any
€ > 0, there exists a value of x for which | f(x) — L| < €.

Explain why the function in your example does not have the given
value of L as a limit as x — xj.

Grinding engine cylinders Before contracting to grind engine
cylinders to a cross-sectional area of 9 in?, you need to know how
much deviation from the ideal cylinder diameter of xy = 3.385
in. you can allow and still have the area come within 0.01 in® of
the required 9 in®. To find out, you let 4 = 7 (x/2)* and look for
the interval in which you must hold x to make |4 — 9| = 0.01.
What interval do you find?

Manufacturing electrical resistors Ohm'’s law for electrical cir-
cuits like the one shown in the accompanying figure states that
V= RI. In this equation, V is a constant voltage, / is the current
in amperes, and R is the resistance in ohms. Your firm has been
asked to supply the resistors for a circuit in which V" will be 120

volts and / is to be 5 + 0.1 amp. In what interval does R have to
lie for / to be within 0.1 amp of the value [y = 5?

i o 4
+‘[ U

When Is a Number L Not the Limit of f(x)
as x —>Xxp?

We can prove that lim,—.,, f(x) # L by providing an € > 0 such that
no possible & > 0 satisfies the condition

Forallx, 0 < |x — x| <& = |f(x) — L| <e.

We accomplish this for our candidate € by showing that for each
6 > 0 there exists a value of x such that

0<|x—x| <6 and |f(x) — L] = €.
y
y =f(x)
L+e
P
I |
Lt | |
I |
I |
L—¢€ : |
| [
S ]
— iy
0|xg—8 | x9g xg+06 !

a value of x for which
O<|xfx0| <6and|f(x)fL| =€

X x <1
57. Let f(x) = {7
et f(x) {x+1, x> 1.

y
y=x+1

y =/

]
I
=
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a. Lete = 1/2. Show that no possible & > 0 satisfies the
following condition:

Forallx, 0<|x—1] <& = [f(x) — 2| < 1/2.
That is, for each 6 > 0 show that there is a value of x such that
0<|x—1] <& and |f(x) — 2| = 1/2.
This will show that lim,—; f(x) # 2.
b. Show that lim,—; f(x) # 1.
¢. Show that lim,—; f(x) # 1.5.
X% o x<2
58. Leth(x) =43, x=2
2, x> 2.
y
y = h(x)
y=2
e
X

Show that

a. lim A(x) # 4
x—2

b. lim A(x) # 3
x—2

c. lim a(x) # 2
x—2

59. For the function graphed here, explain why

a. lim3 flx) # 4
X—

b. lim f(x) # 4.8
x—3

c. lim f(x) # 3
x—3

y
48| \
4 °
y =/
3+ o\
L x
0 3

2.3 The Precise Definition of a Limit 101

60. a. For the function graphed here, show that lim,— _; g(x) # 2.

b. Does lim,—_ g(x) appear to exist? If so, what is the value of
the limit? If not, why not?

y = g(x) /

| X
/ -1 0

COMPUTER EXPLORATIONS

In Exercises 61-66, you will further explore finding deltas graphi-
cally. Use a CAS to perform the following steps:

a. Plot the function y = f(x) near the point x, being approached.

b. Guess the value of the limit L and then evaluate the limit
symbolically to see if you guessed correctly.

c. Using the value e = 0.2, graph the banding lines y; = L — €
and y, = L + € together with the function f near xo.

d. From your graph in part (c), estimate a 6 > 0 such that for all x

0<|x—x| <6 = [f(x) = L] <e.

Test your estimate by plotting f, y;, and y, over the interval

0 < |x — xo| < &. For your viewing window use

X — 20 =x=xp)+20andL — 2e =y =L + 2¢.Ifany
function values lie outside the interval [L — €, L + €], your
choice of 6 was too large. Try again with a smaller estimate.

e. Repeat parts (c) and (d) successively for e = 0.1, 0.05, and
0.001.

61. f(x) = x;_%, X =13

62. f(x) = %, X =0

63. f(x) = sh;%’ X0=0

64. f(x) = % X0 =0

65. f(x) = %, xo=1

6. fy = T OE DV es
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102 Chapter 2: Limits and Continuity

One-Sided Limits and Limits at Infinity

FIGURE 2.21 Different right-hand and
left-hand limits at the origin.

In this section we extend the limit concept to one-sided limits, which are limits as x ap-
proaches the number xy from the left-hand side (where x < xj) or the right-hand side
(x > x¢) only. We also analyze the graphs of certain rational functions as well as other
functions with limit behavior as x — +00.

One-Sided Limits

To have a limit L as x approaches c, a function f must be defined on both sides of ¢ and its
values f(x) must approach L as x approaches ¢ from either side. Because of this, ordinary
limits are called two-sided.

If f fails to have a two-sided limit at ¢, it may still have a one-sided limit, that is, a
limit if the approach is only from one side. If the approach is from the right, the limit is a
right-hand limit. From the left, it is a left-hand limit.

The function f(x) = x/|x|(Figure 2.21) has limit 1 as x approaches 0 from the right,
and limit —1 as x approaches 0 from the left. Since these one-sided limit values are not the
same, there is no single number that f(x) approaches as x approaches 0. So f(x) does not
have a (two-sided) limit at 0.

Intuitively, if f(x) is defined on an interval (¢, b), where ¢ < b, and approaches arbi-
trarily close to L as x approaches ¢ from within that interval, then f has right-hand limit L
at c. We write

lim_f(x) = L.
xX—c
The symbol “x — ¢*> means that we consider only values of x greater than c.

Similarly, if f(x) is defined on an interval (a, ¢), where a < ¢ and approaches arbi-
trarily close to M as x approaches ¢ from within that interval, then f has left-hand limit M/
at c. We write

lim f(x) = M.
xX—>c
The symbol “x — ¢~ means that we consider only x values less than c.

These informal definitions are illustrated in Figure 2.22. For the function f(x) = x/|x]
in Figure 2.21 we have

lim_ f(x) = 1 and lim f(x) = —1.
x—0" x—0"
y y
—
L f&) Fx) M
X X
0 C t= X 0 X e C
(a) lim+ fx)=L (b) lim f(x)=M
x-c x—c

FIGURE 2.22 (a) Right-hand limit as x approaches ¢. (b) Left-hand limit as x
approaches c.
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y
y=V4 - x?
-2 2 0
FIGURE 2.23 lim V4 — x? = 0and

x—2

lim V4 - x2 = 0 (Example 1).

x— =2

|
Video O\

FIGURE 2.24 Graph of the function

in Example 2.

2.4 One-Sided Limits and Limits at Infinity 103

EXAMPLE 1 One-Sided Limits for a Semicircle
The domain of f(x) = V4 — x?is [—2, 2]; its graph is the semicircle in Figure 2.23. We
have
lim V4 —x*=0 and  lim V4 —x*=0.
x—— x—
The function does not have a left-hand limit at x = —2 or a right-hand limit at x = 2. It
does not have ordinary two-sided limits at either —2 or 2. ]

One-sided limits have all the properties listed in Theorem 1 in Section 2.2. The right-
hand limit of the sum of two functions is the sum of their right-hand limits, and so on. The
theorems for limits of polynomials and rational functions hold with one-sided limits, as
does the Sandwich Theorem and Theorem 5. One-sided limits are related to limits in the
following way.

THEOREM 6

A function f(x) has a limit as x approaches c if and only if it has left-hand and
right-hand limits there and these one-sided limits are equal:

lim f(x) = L s lim f(x) =L and lim_f(x) = L.
x—c x—c x—c
EXAMPLE 2  Limits of the Function Graphed in Figure 2.24
Atx = 0: lim,—¢+ f(x) = 1,
lim,—¢- f(x) and lim,—¢ f(x) do not exist. The function is not de-
fined to the left of x = 0.
Atx = 1: lim,—- f(x) = 0 even though f(1) = 1,
lim,—+ f(x) = 1,
lim,— f(x) does not exist. The right- and left-hand limits are not
equal.
Atx = 2: lim,—,- f(x) = 1,
limy o+ f(x) = 1,
lim,—, f(x) = 1 even though f(2) = 2.
Atx = 3: lim,—3- f(x) = lim,—3+ f(x) = lim,—3 f(x) = f(3) = 2.
Atx = 4: lim,—4 f(x) = 1 even though f(4) # 1,
lim,—4+ f(x) and lim,—4 f(x) do not exist. The function is not de-
fined to the right of x = 4.
At every other point ¢ in [0, 4], f(x) has limit f(c). [

Precise Definitions of One-Sided Limits

The formal definition of the limit in Section 2.3 is readily modified for one-sided limits.
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y
L+ e
o f(x)
f(x) lies
L= in here
L—el
for all x # x,
in here
5
0 . 3 X
X Xo+ 0

FIGURE 2.25

Intervals associated with

the definition of right-hand limit.

y
L+eA
o f(x)
f(x) lies
Lr in here
L — el
for all x # x
in here
) b
£ . x
0 Xp— 8 X
FIGURE 2.26 Intervals associated with

the definition of left-hand limit.

y
fe) =Vax

€EAS——————— T
|
)1 |
|
|
o Al

L=0 x 82 *

FIGURE 2.27 lirr01+\/); = 0 in Example 3.
X—

DEFINITIONS Right-Hand, Left-Hand Limits
We say that f(x) has right-hand limit L at x,, and write

lim f(x) =L (See Figure 2.25)
XX
if for every number € > 0 there exists a corresponding number 6 > 0 such that
for all x

xo<x<xp+3é = |f(x) — L] <e.
We say that f has left-hand limit L at x,, and write

lim f(x) =L (See Figure 2.26)
X—>X(

if for every number € > 0 there exists a corresponding number 6 > 0 such that

for all x
xo— 8 < x<xg = |f(x) — L] <e.
EXAMPLE 3  Applying the Definition to Find Delta
Prove that
xli)lr()g\/i = 0.
Solution Let e > 0 be given. Here xo = 0 and L = 0, so we want to find a > 0 such
that for all x
0<x<s8 = |Vx—0]<e,
or
0<x<8 = Vx<e.

Squaring both sides of this last inequality gives

x < € it 0<x<3a.

If we choose 6 = € we have
0<x<d=¢e \/);<e,

or

=

'Vx = 0] <e.

According to the definition, this shows that limx_,o+\/; = 0 (Figure 2.27).

0<x<eée

The functions examined so far have had some kind of limit at each point of interest. In
general, that need not be the case.

EXAMPLE 4 A Function Oscillating Too Much L
L
Show that y = sin (1/x) has no limit as x approaches zero from either side (Figure 2.28). F =
Animatiol
Solution  As x approaches zero, its reciprocal, 1/x, grows without bound and the values

of sin (1/x) cycle repeatedly from —1 to 1. There is no single number L that the function’s
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y=sin<

111}

FIGURE 2.28 The function y = sin (1/x) has neither a
right-hand nor a left-hand limit as x approaches zero
(Example 4).

values stay increasingly close to as x approaches zero. This is true even if we restrict x to

positive values or to negative values. The function has neither a right-hand limit nor a left-
hand limit atx = 0. [

Limits Involving (sin 6)/0

A central fact about (sin 6)/6 is that in radian measure its limit as § — 0 is 1. We can see
this in Figure 2.29 and confirm it algebraically using the Sandwich Theorem.

L, L 0
-3 —om~—“Zr ~—"2m 3
y
NOT TO SCALE
1 r FIGURE 2.29 The graph of £(6) = (sin 8)/6.
P
THEOREM 7
tan 0 sin 0
1 lim =1 (6 in radians) (1)
sin 0 6—0 0
0 cosf 1 N
o 0 A(1,0) . . ..
Proof The plan is to show that the right-hand and left-hand limits are both 1. Then we
1 will know that the two-sided limit is 1 as well.

FIGURE 2.30 The figure for the proof of . To szh%v ﬂ;\?t tt.he rtilg};t-hand limit is 1, we begin with positive values of 0 less than 7/2
Theorem 7. TA/OA = tan 0, but 04 = 1, (1 1gure 2.30). Notice tha
soTA = tan . Area AOAP < area sector OAP < area AOAT.
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| Equation (2) is where radian measure We can express these areas in terms of 6 as follows:
comes in: The area of sector OAP is 6/2 { ' . ’ .
only if 6 is measured in radians. Area AOAP = Ebase X height = 5 (1)(sin §) = 5 sin 6
Area sector OAP = 1120 = l(1)29 =9 @)
2 2 2

Area AOAT = %base X height = %(1)(tan 0) = %tan@.

Thus,

1 . 1 1
Esme < 50 < Etan@.

This last inequality goes the same way if we divide all three terms by the number
(1/2) sin 0, which is positive since 0 < § < r/2:

0 1
< = < .
! sinf ~ cosf
Taking reciprocals reverses the inequalities:

sin 0
0

1> > cos 6.

Since limy— ¢+ cos § = 1 (Example 6b, Section 2.2), the Sandwich Theorem gives

. sinf
lim —— =

1.
9—0" 0

Recall that sinf and 6 are both odd functions (Section 1.4). Therefore, f(6) =
(sin 0)/0 is an even function, with a graph symmetric about the y-axis (see Figure 2.29).
This symmetry implies that the left-hand limit at 0 exists and has the same value as the
right-hand limit:

lim sinf _ 1 = lim sin
o—0- 0 0—0" 0 °
so limy— (sin 6)/6 = 1 by Theorem 6. [
EXAMPLE 5 Using lim 309 = 1
9—o0 0
cosh — 1 sin2x _ 2

Show that (a) }}imo =0 and (b) lirr%) =
— x—>

h S5x 5°

Solution

(a) Using the half-angle formula cos 7 = 1 — 2 sin*(//2), we calculate

. cosh—1 . 2 sin? (h/2)
Im ———=lim — ————
=0 h h—0 h
= —lim sin 0 sin 0 Leto = h/2.
9—0 0
= —(1)(0) = 0.
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1

FIGURE 2.31 The graph of y = 1/x.

2.4 One-Sided Limits and Limits at Infinity 107

(b) Equation (1) does not apply to the original fraction. We need a 2x in the denominator,
not a 5x. We produce it by multiplying numerator and denominator by 2/5:

lim 02 _  (2/5)" sinZv

x—0 5x x—0 (2/5) «Sx
= ; : M Now, Eq. (1) applies with
=5 im o 0 = 2x.
22

Finite Limits as x — + o©

The symbol for infinity (00) does not represent a real number. We use 00 to describe the
behavior of a function when the values in its domain or range outgrow all finite bounds.
For example, the function f(x) = 1/x is defined for all x # 0 (Figure 2.31). When x is
positive and becomes increasingly large, 1/x becomes increasingly small. When x is nega-
tive and its magnitude becomes increasingly large, 1/x again becomes small. We summa-
rize these observations by saying that f(x) = 1/x has limit 0 as x — 00 or that 0 is a
limit of f(x) = 1/x at infinity and negative infinity. Here is a precise definition.

DEFINITIONS Limit as x approaches o or —
1. We say that f(x) has the limit L as x approaches infinity and write

lim f(x) = L

if, for every number € > 0, there exists a corresponding number M such that
for all x

x> M = |f(x) — L| <e.
2. We say that f(x) has the limit L as x approaches minus infinity and write
lim f(x) =1L
x—>—00

if, for every number € > 0, there exists a corresponding number N such that
for all x

x <N = |[f(x) — L] <e.

Intuitively, lim,—c f(x) = L if, as x moves increasingly far from the origin in the positive
direction, f(x) gets arbitrarily close to L. Similarly, lim,—_oo f(x) = L if, as x moves in-
creasingly far from the origin in the negative direction, f(x) gets arbitrarily close to L.

The strategy for calculating limits of functions as x — +00 is similar to the one for
finite limits in Section 2.2. There we first found the limits of the constant and identity
functions y = k and y = x. We then extended these results to other functions by applying
a theorem about limits of algebraic combinations. Here we do the same thing, except that
the starting functions are y = k and y = 1/x instead of y = kand y = x.
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No matter what
positive number € is,
the graph enters

this band at x = c
and stays.

No matter what
positive number € is,
the graph enters

this band at x = -
and stays.

FIGURE 2.32 The geometry behind the
argument in Example 6.

The basic facts to be verified by applying the formal definition are

lim k=k%

Xx—>+£00

lim
xX—>£00

and % =0. (3)

We prove the latter and leave the former to Exercises 71 and 72.

EXAMPLE 6  Limits at Infinity for f(x) = »
Show that

1 1
(a) 111101O ¥=0 (b) 11111Oo ¥ = 0.
Solution

(a) Lete > 0 be given. We must find a number M such that for all x

1

1
x> M = X x<€.

_0‘

The implication will hold if M = 1/€ or any larger positive number (Figure 2.32).
This proves lim,— (1/x) = 0.

(b) Lete > 0 be given. We must find a number N such that for all x

x <N = % %<e.

E

The implication will hold if N = —1/e or any number less than —1/€ (Figure 2.32).
This proves lim,—_oo (1/x) = 0. ]

Limits at infinity have properties similar to those of finite limits.

THEOREM 8 Limit Laws as x — + o0
If L, M, and k, are real numbers and
lim f(x) =L and lim g(x) = M, then
x—>£00 x—>£00
1. Sum Rule: lim (f(x) + gx)) =L+ M
x—>+00
2. Difference Rule: lirfoo(f(x) —gx)=L—-M
xX—>
3. Product Rule: lim (f(x)-gx)) =L-M
xX—>300
4. Constant Multiple Rule: lirin (k- f(x)) = k-L
X—>100
X
5. Quotient Rule: xligloo;ix; = ﬁ, M#0
6. Power Rule: If r and s are integers with no common factors, s # 0, then
lim (f(x))” = L""
xX—>+00
provided that L"/* is a real number. (If s is even, we assume that L > 0.)
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FIGURE 2.33 The graph of the function
in Example 8. The graph approaches the
line y = 5/3 as|x|increases.

Video

y

FIGURE 2.34 The graph of the
function in Example 9. The graph
approaches the x-axis as | x| increases.
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These properties are just like the properties in Theorem 1, Section 2.2, and we use
them the same way.

EXAMPLE 7  Using Theorem 8

@) lim <5-+;>

lim 5+ lim 1

= Sum Rule
x—00 x—0 x—>0
=5+0=35 Known limits
. 7V 3 . 11
(b) lim > = lim w\/§°g'f
x—>—00 X x—>—00
. . 1 .
= lim 77\/3 + lim x° li X Product rule
x—>—00 x—>—00 x—>—00
= 77\/5 0-0=0 Known limits ]

Limits at Infinity of Rational Functions

To determine the limit of a rational function as x — £00, we can divide the numerator
and denominator by the highest power of x in the denominator. What happens then de-
pends on the degrees of the polynomials involved.

EXAMPLE 8  Numerator and Denominator of Same Degree
lim 5x2 + 8 — 3 ~ lim 5+ (8/x) — (3/x2) Divide numerator and
X—>00 3x2 + 2 X—>00 3+ (2/)(2) denominator by x2.
_5+40-0_5 o
= W = § See Fig. 2.33. ]
EXAMPLE 9  Degree of Numerator Less Than Degree of Denominator

o 1lx + 2 o (1/x?) + (2/x)
lim —— = lim

Divide numerator and

x——00 2y3 — 1 X—>—00 2 — (1/)63) denominator by x°.
=940 0 See Fig. 2.34 u
= = See Fig. 2.34.
2-0 ¢

We give an example of the case when the degree of the numerator is greater than the
degree of the denominator in the next section (Example 8, Section 2.5).

Horizontal Asymptotes

If the distance between the graph of a function and some fixed line approaches zero as a
point on the graph moves increasingly far from the origin, we say that the graph ap-
proaches the line asymptotically and that the line is an asymptote of the graph.

Looking at f(x) = 1/x (See Figure 2.31), we observe that the x-axis is an asymptote
of the curve on the right because

.1
Jim ¥ =0
and on the left because
. 1
= 0.
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Video Video

y
/Y_z_’_sigx
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' N—
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! ! ! ! ! ! X
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FIGURE 2.35 A curve may cross one of
its asymptotes infinitely often (Example
11).

We say that the x-axis is a horizontal asymptote of the graph of f(x) = 1/x.

DEFINITION  Horizontal Asymptote
A line y = b is a horizontal asymptote of the graph of a function y = f(x) if

either
lim f(x) =b or lim f(x) = b.
x—00 x——00
The curve
_ 5x2 + 8 — 3
flx) = 3x2 + 2

sketched in Figure 2.33 (Example 8) has the line y = 5/3 as a horizontal asymptote on
both the right and the left because

lim fx) =3 and  lim_f(x) = 3.
x—>0 x—>—00
EXAMPLE 10  Substituting a New Variable
Find lim sin (1/x).
x—00

Solution ~ We introduce the new variable r = 1/x. From Example 6, we know that t — 0"
as x — o0 (see Figure 2.31). Therefore,

lim sin% = lim sint = 0. ]
x—00 t—07"
The Sandwich Theorem Revisited

The Sandwich Theorem also holds for limits as x — £00.

EXAMPLE 11 A Curve May Cross Its Horizontal Asymptote
Using the Sandwich Theorem, find the horizontal asymptote of the curve

sin x
X

y=2+

Solution  We are interested in the behavior as x — £00. Since

sin x

0= |

1
X

and lim,— 40 | 1/x| = 0, wehave lim,— . (sinx)/x = 0 by the Sandwich Theorem. Hence,

lim <2+51;“‘>=2+0=2,

x—>+£00

and the line y = 2 is a horizontal asymptote of the curve on both left and right (Figure 2.35).
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FIGURE 2.36 The function in Example
12 has an oblique asymptote.

2.4 One-Sided Limits and Limits at Infinity 111

This example illustrates that a curve may cross one of its horizontal asymptotes, per-
haps many times. L]

Oblique Asymptotes

If the degree of the numerator of a rational function is one greater than the degree of the
denominator, the graph has an oblique (slanted) asymptote. We find an equation for the
asymptote by dividing numerator by denominator to express f as a linear function plus a
remainder that goes to zero as x — £00. Here’s an example.

EXAMPLE 12  Finding an Oblique Asymptote
Find the oblique asymptote for the graph of

2x* — 3
fox) = Ix + 4
in Figure 2.36.
Solution By long division, we find
X2 -3
fix) = Tx + 4
_ (2, 8\, -l
7% T 49 49(7x + 4)
linear function g(x) remainder

As x — 100, the remainder, whose magnitude gives the vertical distance between the
graphs of f and g, goes to zero, making the (slanted) line

2 8
g(x)=7x—@

an asymptote of the graph of f (Figure 2.36). The line y = g(x) is an asymptote both to
the right and to the left. In the next section you will see that the function f(x) grows arbi-
trarily large in absolute value as x approaches —4/7, where the denominator becomes zero
(Figure 2.36). [
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EXERCISES 2.4

2.4 One-Sided Limits and Limits at Infinity

111

Finding Limits Graphically

1. Which of the following statements about the function y = f(x)
graphed here are true, and which are false?

y
y=fx)

®

lim f(x) =1 b. lim f(x) =0
x——1" x—0

. lim f(x) = 1 d. lim f(x) = lim_ f(x)
x—0 x—0 x—0
. lim f(x) exists f. lim f(x) =0
x—0 x—0
lim f(x) =1 h. lim f(x) = 1
x—0 x—1
lim f(x) = 0 jo lim f(x) =2
x> x—>
lim1 _ f(x) does not exist. L lirrzl+ fx) =0
x—— x—
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. Let f(x) =

2. Which of the following statements about the function y = f(x)

graphed here are true, and which are false?

y
y =)
2+ °
1+ *—-oO0—o
| | | | X
-1 0 1 2 3

o

. li}}lﬁf(x) =1

c. lim f(x) =2

Xli)nlg flx) =1

Jim f(x) = lim_f(x)

lim f(x) exists at every c in the open interval (—1, 1).
xX—c

b. lim2 f(x) does not exist.
x>

d. lim f(x) =2
x—1

®

f. lim1 f(x) does not exist.
xX—>

50

=

lim f(x) exists at every ¢ in the open interval (1, 3).
xX—c
jo lim f(x) =0
x——1
3—x, x<2

X
2+1, x> 2.

k. lin31+ f(x) does not exist.
x>

0 2 4 *
a. Find lim,—,+ f(x) and lim,—,- f(x).
b. Does lim,—; f(x) exist? If so, what is it? If not, why not?
¢. Find lim,—4- f(x) and lim,—4+ f(x).
d. Does lim,—4 f(x) exist? If so, what is it? If not, why not?
3—x x<2
4. Let f(x) = 2, x=2
%’ x> 2
y
y=3 X‘
3
— [ )
X
- y = 2
| | | | 1 | X
-2 0 2

a. Find lim,—,+ f(x), lim,—,- f(x), and f(2).
b. Does lim,—; f(x) exist? If so, what is it? If not, why not?
c. Find lim,——- f(x) and lim,—_+ f(x).
d. Does lim,——; f(x) exist? If so, what is it? If not, why not?
0, x=0
5. Let f(x) =
sing, x> 0.
y
1 -
X
0
0, x=0
Y=4
sing, x> 0
—1F

a. Does lim,—¢+ f(x) exist? If so, what is it? If not, why not?
b. Does lim,—- f(x) exist? If so, what is it? If not, why not?

¢. Does lim,— f(x) exist? If so, what is it? If not, why not?

6. Let g(x) = \/);sin(l/x).

y
I+ y:\/);
= Vixsi 1
y=Vuxsing
1
2m | | X
0 T 2 1
T T
-1F y=-Vx

a. Does lim,—g+ g (x) exist? If so, what is it? If not, why not?
b. Does lim,—(- g(x) exist? If so, what is it? If not, why not?

¢. Does lim,—( g(x) exist? If so, what is it? If not, why not?
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Exercise

Exercise

3 # 1
. Graph f(x) = {x ’ o
0, x=1.
b. Find lim,— ;- f(x) and lim,—+ f(x).

¢. Does lim,—,; f(x) exist? If so, what is it? If not, why not?

1 —x? # 1
Graph f(x) = { R

2, x = 1.
b. Find lim,—+ f(x) and lim,—1- f(x).

¢. Does lim,—; f(x) exist? If so, what is it? If not, why not?

8. a.

Graph the functions in Exercises 9 and 10. Then answer these ques-
tions.

a. What are the domain and range of f?

b. At what points c, if any, does lim,—. f(x) exist?

c. At what points does only the left-hand limit exist?
d. At what points does only the right-hand limit exist?

V1-x% 0=x<1
9. f(x) =141, 1l=x<2

2, x =2

x, —1=x<0, or 0<x=1
10. f(x) =41, x=0

0, x<-—-1, or x>1

Finding One-Sided Limits Algebraically

Find the limits in Exercises 11-18.

x+2 . x—1
1. x——05Vx + 1 12. xll>n11+ x+2
13. 1lim < X ><2x+5)
x—>—24r +1 X+ x
x+6\(3—x
i () () (5
2 _
5. 1 +4h+ Vs
h—0"
_ 2
16, Tim V6 — \V5h2 + 11h + 6
h—0" h
i |x + 2| | |x + 2]
17.a.)6_1)1112+()c—i-3)x+2 b.x_1)111(x+3) T
 Vax(x - 1) C Vax(x - 1)
18. a. lim ——— b. lm ————
x—1" |x - 1| x—1" |x - 1|

Use the graph of the greatest integer function y = | x| (sometimes
written y = intx), Figure 1.31 in Section 1.3, to help you find the lim-
its in Exercises 19 and 20.

6]

1 e by
20. a tl_l)%(t = |t]) b. tl_l)Ialﬁ(t = |t])

2.4 One-Sided Limits and Limits at Infinity

Using lim sin 0

=1
0—o 0

Find the limits in Exercises 21-36.

113

21. lim sin'V/26 22. lim sin kt (k constant)
6—0 \/29 t—0
23, fim 20 24. i
"o 4y 0 sin 3k
. tan2x 2t
25. ,}ER)T 26. tlgr(l) E
27. lim xcse 2x 28. lim 6x%(cotx)(csc 2x)
x—0 C€OS Sx =0
2 _ .
29. lim w 30. lim X" — x + sinx
x—0 SINXCoSx x—0 2x
~ sin(1 — cos ) sin (sin /)
31. lim————~ 32, lim ————
—0 1 — cost h—0 sinh
sin 6 sin 5x
33. 611—13) sin 26 34. )}E}}) sin 4x
sin 3y cot 5
35. lim ta}n 3x 36. llm#
x—0 sin 8x y—0 ycotdy

Calculating Limits as x — + oo

In Exercises 37-42, find the limit of each function (a) as x — ©0 and
(b) as x — —o0. (You may wish to visualize your answer with a
graphing calculator or computer.)

3. f) = 2 -3 8. ) =75
X
39. g(x) = 54— 40, gy = — L
2+ (1/x) 8 — (5/x?)
=5+ (7/x 3 —-(2/x
Ay = I 2 =
3 — (1/x?) 4+ (V2/x?)
Find the limits in Exercises 43—46.
43. lim S0 4. lim <8¢
x—>00 f——00 30
.2 —1t+sint r + sinr
45. t_lir,noo t + cost 46. rll)rrgo 2r + 7 — Ssinr

Limits of Rational Functions

In Exercises 47-56, find the limit of each rational function (a) as
X — 00 and (b) as x — — 00,

_2x + 3 _ 23 + 7
47.f(x)—5x+7 48. f(x) = R
x + 1 3x + 7
49. = 50.
f(x) 243 flx) = -
7x? 1
51. hix) = ——5—— 52. =
() x> = 3x2 + 6x g X —4x + 1
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10x° + x* + 31

53. gx) = p
X
54, h(x) = ot + x
) 2t + 52 —x+ 6
-2 = 2x +3
55. hix) = —V———7>F——
G) 3x% + 3x2 — 5x
_ .4
56. h(x) = X

X =73+ P+ 9

Limits with Noninteger or Negative Powers

The process by which we determine limits of rational functions ap-
plies equally well to ratios containing noninteger or negative powers
of x: divide numerator and denominator by the highest power of x in
the denominator and proceed from there. Find the limits in Exercises

57-62.
-1
57. lim 2V + ! 58. lim 2+ Vi
x—00 3x — 7 xX—>00 19 \/;C
3o A -1 —4
s0. lm V= Vx 60. lim X~ "%
x—>=00 Yy 4y x—00x 2 — 73

53 1f3 3o
61. lim 2 —x P+ T 62. lim M

x—>00 x8/5 + 3y + \/); x—>—00 Qy + x2/3 — 4

Theory and Examples

63. Once you know lim,—,+ f(x) and lim,—,- f(x) at an interior point
of the domain of £, do you then know lim,—., f(x)? Give reasons
for your answer.

64. If you know that lim,—.. f(x) exists, can you find its value by cal-
culating lim,—.+ f(x)? Give reasons for your answer.

65. Suppose that f is an odd function of x. Does knowing that
lim,—o+ f(x) = 3 tell you anything about lim,—.¢- f(x)? Give rea-
sons for your answer.

66. Suppose that f is an even function of x. Does knowing that
lim,—,- f(x) = 7 tell you anything about either lim,—_»- f(x) or
lim,—_+ f(x)? Give reasons for your answer.

67. Suppose that f(x) and g(x) are polynomials in x and that
lim, o0 (f(x)/g(x)) = 2. Can you conclude anything about
lim,—— (f(x)/g(x))? Give reasons for your answer.

68. Suppose that f(x) and g(x) are polynomials in x. Can the graph of
f(x)/g(x) have an asymptote if g(x) is never zero? Give reasons
for your answer.

69. How many horizontal asymptotes can the graph of a given ra-
tional function have? Give reasons for your answer.

70. Find lim (Vx? +x — Va? — x).
x—00

Use the formal definitions of limits as x — 00 to establish the limits
in Exercises 71 and 72.

71. If f has the constant value f(x) = k, then lim f(x) = k.
x—>00

72. 1f f has the constant value f(x) = k, then lim f(x) = k.
x—>—00

Formal Definitions of One-Sided Limits

73. Given € > 0, find an interval 7 = (5,5 + §), 6 > 0, such that
if x lies in 7, then Vx — 5 < e. What limit is being verified and
what is its value?

74. Given € > 0, find an interval / = (4 — §,4),8 > 0, such that
if x lies in /, then V4 — x < e. What limit is being verified and
what is its value?

Use the definitions of right-hand and left-hand limits to prove the
limit statements in Exercises 75 and 76.

| 76. lim -~ 2 — |

. i =
75. lim L —y

x—0" |x |

77. Greatest integer function Find (a) lim,—4o+ x| and (b)
limy—400- | X | ; then use limit definitions to verify your findings.
(c¢) Based on your conclusions in parts (a) and (b), can anything
be said about limy 40| x | ? Give reasons for your answers.

xZsin(1/x), x <0

78. One-sided limits Let f(x) = {
X, x> 0.

Find (a) lim,—o+ f(x) and (b) lim,—q- f(x); then use limit definitions
to verify your findings. (¢) Based on your conclusions in parts (a)
and (b), can anything be said about lim,—( f(x)? Give reasons for
your answer.

Grapher Explorations—*“Seeing” Limits
at Infinity

Sometimes a change of variable can change an unfamiliar expression
into one whose limit we know how to find. For example,

. .1 . .
lim siny = lim sin 6
x—>00 6—0"

Substitute § = 1/x
=0.

This suggests a creative way to “see” limits at infinity. Describe the
procedure and use it to picture and determine limits in Exercises
79-84.

. .1
79. xll)liloo x sin

cos (1/x)
oI T+ (1/x)

81, lim X T4

x—>+00 2x -5

) 1 1/x
82. leHgO X
. 2 1
83. xll)riloo (3 + }) (cos ;)
84. lingo(i2 - cos%) (1 + sin%)
x— X

80.
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Infinite Limits and Vertical Asymptotes

y

You can get as high
as you want by
taking x close enough
to 0. No matter how
high B is, the graph
B ¢ | goes higher.

£0
\ No matter how
low —B is, the
\ graph goes lower.
s

You can get as low as| ¢
you want by taking
x close enough to 0.

FIGURE 2.37 One-sided infinite limits:

lim =00 and  lim - = —oo

x—0* % x—0"

FIGURE 2.38 Near x = 1, the function
» = 1/(x — 1) behaves the way the
function y = 1/x behaves near x = 0. Its
graph is the graph of y = 1/x shifted 1
unit to the right (Example 1).

In this section we extend the concept of limit to infinite limits, which are not limits as be-
fore, but rather an entirely new use of the term limit. Infinite limits provide useful symbols
and language for describing the behavior of functions whose values become arbitrarily
large, positive or negative. We continue our analysis of graphs of rational functions from
the last section, using vertical asymptotes and dominant terms for numerically large values
of x.

Infinite Limits

Let us look again at the function f(x) = 1/x. As x— 0", the values of f grow without
bound, eventually reaching and surpassing every positive real number. That is, given any
positive real number B, however large, the values of f become larger still (Figure 2.37).
Thus, f has no limit as x — 0. It is nevertheless convenient to describe the behavior of f
by saying that f(x) approaches 00 as x — 0". We write

. |
1 = lim - = 00,
Arg. S0 = Jig

In writing this, we are not saying that the limit exists. Nor are we saying that there is a real
number 00, for there is no such number. Rather, we are saying that lim,—q+ (1/x) does not
exist because 1/x becomes arbitrarily large and positive as x — 0.

As x— 07, the values of f(x) = 1/x become arbitrarily large and negative. Given
any negative real number —B, the values of f eventually lie below —B. (See Figure 2.37.)
We write

. .1
1 = lim - = —00.
xin()l’ f(X) xin()l’ X

Again, we are not saying that the limit exists and equals the number — 0. There is no real
number —00 ., We are describing the behavior of a function whose limit as x — 0~ does not
exist because its values become arbitrarily large and negative.

EXAMPLE 1  One-Sided Infinite Limits

Find lim L and lim .
r—1tx — 1 r—1-x —1

Geometric Solution ~ The graph of y = 1/(x — 1) is the graph of y = 1/x shifted 1 unit
to the right (Figure 2.38). Therefore, y = 1/(x — 1) behaves near 1 exactly the way
» = 1/x behaves near 0:

lim —— =00  and  lim —— =
x—1rx — 1 x—1"x — 1

—0.
Analytic Solution  Think about the number x — 1 and its reciprocal. As x — 1*, we have
(x—1)—0" and 1/(x —1)—o00. As x— 17, we have (x —1)—0" and
1/(x — 1)—> —o00. ]
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No matter how

Be high B is, the graph

goes higher.
-1
fo=% p ]
I I
I I
I I
= - X
x 0 X
(@)
()
T ar Y
5 -
4_
3 -
2_
1 —
I I X
-5 -4 -3 -2 -1 0

(b)

FIGURE 2.39 The graphs of the
functions in Example 2. (a) f(x)
approaches infinity as x — 0. (b) g(x)
approaches infinity as x — —3.

EXAMPLE 2

Discuss the behavior of

Two-Sided Infinite Limits

(@) f(x) = = nearx = 0,

_ # - _
) g(x) = G+ 3 near x 3.
Solution

(a) As x approaches zero from either side, the values of 1/x? are positive and become ar-
bitrarily large (Figure 2.39a):

hm flx) = 11m —
0 x?

0.

(b) The graph of g(x) = 1/(x + 3)?is the graph of f(x) = 1/x? shifted 3 units to the left
(Figure 2.39b). Therefore, g behaves near —3 exactly the way f behaves near 0.

. 1
lim lim —— = o0, [
x—-3 glv) = =3 (x + 3)2
The function y = 1/x shows no consistent behavior as x — 0. We have 1/x — o0 if
x— 0", but 1/x — —00 if x — 0. All we can say about lim,— (1/x) is that it does not
exist. The function y = 1/x? is different. Its values approach infinity as x approaches zero
from either side, so we can say that lim,—q (1/x%) = 0.

EXAMPLE 3  Rational Functions Can Behave in Various Ways Near Zeros
of Their Denominators
(x - 2 (x - 2 -
lim —— = lim —————— =
@ s M G-oa+2 Hxr2 °
-2 x—2 . 1 1
b) lim 5— = lim ———————— A =
QI el s ey Bl L e
. x—3 x—3 . The values are negative
(© xll)ﬂ} 22— 4 xli)n; (x — 2)(x + 2) o0 for x > 2, x near 2.
. x—3 _ x—3 The values are positive
(d) xll)n;— w2 -4 xli)n; (x — 2)(x + 2) o0 for x < 2, x near 2.
(e) lim x=3 = lim _x=3 does not exist. See parts (c) and (d).
=2 x2—4 x-2 (x—=2)(x +2)
— —(x—-2 _
® 1im 2ox gy TE Dy o1
-2 (=20 2 (x =2 22 (x—2)

In parts (a) and (b) the effect of the zero in the denominator at x = 2 is canceled be-
cause the numerator is zero there also. Thus a finite limit exists. This is not true in part (f),
where cancellation still leaves a zero in the denominator. ]

Precise Definitions of Infinite Limits

Instead of requiring f(x) to lie arbitrarily close to a finite number L for all x sufficiently
close to x, the definitions of infinite limits require f(x) to lie arbitrarily far from the ori-
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y =/

\
Xg— 0 Xg+ 0

FIGURE 2.40  f(x) approaches infinity as

X—>Xp.

y

\ Xg— 6 x0+6/
\ ~0 / x

y=f)

FIGURE 2.41  f(x) approaches negative
infinity as x — xg.
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gin. Except for this change, the language is identical with what we have seen before.
Figures 2.40 and 2.41 accompany these definitions.

DEFINITIONS Infinity, Negative Infinity as Limits

1. We say that f(x) approaches infinity as x approaches x,, and write

lim f(x) = o0,
XX

if for every positive real number B there exists a corresponding 6 > 0 such
that for all x

0<|x—x| <6 = f(x) > B.

2. We say that f(x) approaches negative infinity as x approaches x, and write

lim f(x) = —o0,
XX
if for every negative real number — B there exists a corresponding 6 > 0 such

that for all x
0<|x—x| <686 = f(x) < —B.

The precise definitions of one-sided infinite limits at x, are similar and are stated in the
exercises.

EXAMPLE 4  Using the Definition of Infinite Limits

Prove that lim % = 00,
x—0 x

Solution  Given B > 0, we want to find & > 0 such that
0<|x—0] <6 implis - > B.
X

Now,

é >B  ifandonlyifx? < %

or, equivalently,

x| < —L.

VB

Thus, choosing 6 = 1/ VB (or any smaller positive number), we see that

|x| < & implies é > é = B.
Therefore, by definition,
lim % = [ |
x—0 x
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Vertical asymptote

Horizontal 1
asymptote

0 1 Horizontal
asymptote,
y=0

Vertical asymptote,
x=0

FIGURE 2.42 The coordinate axes are
asymptotes of both branches of the
hyperbola y = 1/x.

y
Vertical
asymptote, 6
x=-2 Sk x+3
s YT xT2
. —14
Horizontal 3 x+2
asymptote, .
y=1 ——

L1
-5 -4 -3\-2-10] 1 2 3

FIGURE 2.43 Thelines y = 1 and
x = —2 are asymptotes of the curve
y = (x + 3)/(x + 2) (Example 5).

Vertical Asymptotes

Notice that the distance between a point on the graph of y = 1/x and the y-axis ap-
proaches zero as the point moves vertically along the graph and away from the origin
(Figure 2.42). This behavior occurs because

lim =00 and  lim 1= —co.

x—0" x—0"
We say that the line x = 0 (the y-axis) is a vertical asymptote of the graph of y = 1/x.
Observe that the denominator is zero at x = 0 and the function is undefined there.

DEFINITION Vertical Asymptote
A line x = a is a vertical asymptote of the graph of a function y = f(x) if either

lim f(x) = +00 or lim f(x) = +00.
xX—a x—a

EXAMPLE 5  Looking for Asymptotes
Find the horizontal and vertical asymptotes of the curve

_x+3
Y x + 2

Solution ~ We are interested in the behavior as x — +00 and as x — —2, where the de-
nominator is zero.

The asymptotes are quickly revealed if we recast the rational function as a polynomial
with a remainder, by dividing (x + 2) into (x + 3).

1
X+ 2)x+3
x+2
1
This result enables us to rewrite y:

1
x+ 2

y=1+

We now see that the curve in question is the graph of y = 1/x shifted 1 unit up and 2 units
left (Figure 2.43). The asymptotes, instead of being the coordinate axes, are now the lines
y=landx = —2. [

EXAMPLE 6  Asymptotes Need Not Be Two-Sided

Find the horizontal and vertical asymptotes of the graph of

8

— 4

Solution ~ We are interested in the behavior as x — +00 and as x — +2, where the de-

nominator is zero. Notice that f is an even function of x, so its graph is symmetric with re-
spect to the y-axis.

fx) = -7

(@) The behavior as x —> £00. Since lim,—c f(x) = 0, the line y = 0 is a horizontal
asymptote of the graph to the right. By symmetry it is an asymptote to the left as well
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y (Figure 2.44). Notice that the curve approaches the x-axis from only the negative side
3 (or from below).
y=-
xr—4 (b) The behavior as x — £2. Since
Vertical XILHZL f(x) = —o0 and xlin} flx) = o0,
Vertical asymptote, x = 2 . . . .
asymptote, Horizontal the line x = 2 is a vertical asymptote both from the right and from the left. By sym-
x=- asymptote, y = 0 metry, the same holds for the line x = —2.
1 . .
L1 | | WA N There are no other asymptotes because f has a finite limit at every other point. [
123
EXAMPLE 7  Curves with Infinitely Many Asymptotes
The curves
1 sin x

y =secx = and y =tanx =

cos x CcoS X
FIGURE 2.44 Graph of
y = —8/(x* — 4). Notice that the curve

approaches the x-axis from only one side.

both have vertical asymptotes at odd-integer multiples of 7r/2 , where cos x = 0 (Figure 2.45).

Asymptotes do not have to be two-sided y =secx y = tanx
(Example 6).

To

'
5
3
()

E]

N
N

FIGURE 2.45 The graphs of sec x and tan x have infinitely many vertical
asymptotes (Example 7).

The graphs of

CoS X
sin x

sin x

y =cscx = and y = cotx =

have vertical asymptotes at integer multiples of 7, where sinx = 0 (Figure 2.46).

y y=cscx y y =cotx
1+ 1+
I I I X X
-7 w0 T 7 37 2m -7 _m\0 o\ T 37\ 2m
2 2 -2 2
FIGURE 2.46 The graphs of csc x and cot x (Example 7). |
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_Xx 1
it R v

y= x*=3
2x —
The vertical distance

between curve and
line goes to zero as x — o

[ l Oblique
L T asymptote

1k

2+ Vertical
asymptote,

-3F x=2

FIGURE 2.47 The graph of

f(x) = (x* — 3)/(2x — 4) has a vertical
asymptote and an oblique asymptote
(Example 8).

EXAMPLE 8 A Rational Function with Degree of Numerator Greater than
Degree of Denominator

Find the asymptotes of the graph of

2
. -3
f(x)_)Zcx—4'

Solution  We are interested in the behavior as x — +00 and also as x — 2, where the de-
nominator is zero. We divide (2x — 4) into (x> — 3):

R
2 — 4)x* — 3
x2 — 2x
2x — 3
2x — 4
1
This tells us that
2
_x*—=3 _x 1
=42 " Tn—%
Since lim,—,+ f(x) = 00 and lim,—,- f(x) = —00, the line x = 2 is a two-sided vertical

asymptote. As x — 00, the remainder approaches 0 and f(x) — (x/2) + 1. The line
¥ = (x/2) + 1is an oblique asymptote both to the right and to the left (Figure 2.47).

Notice in Example 8, that if the degree of the numerator in a rational function is greater
than the degree of the denominator, then the limit is +00 or —00, depending on the signs
assumed by the numerator and denominator as | x| becomes large.

Dominant Terms
Of all the observations we can make quickly about the function

*-3
f(x)=)2;7_4

in Example 8, probably the most useful is that

_X 1
f(x)—2+l+2x_4.
This tells us immediately that
f(x) ~ % +1 For x numerically large
f(x) ~ b 1_ 4 For x near 2

If we want to know how f behaves, this is the way to find out. It behaves like
¥ = (x/2) + 1 when x is numerically large and the contribution of 1/(2x — 4) to the total
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value of f is insignificant. It behaves like 1/(2x — 4) when x is so close to 2 that
1/(2x — 4) makes the dominant contribution.

We say that (x/2) + | dominates when x is numerically large, and we say that
1/(2x — 4) dominates when x is near 2. Dominant terms like these are the key to predict-
ing a function’s behavior. Here’s another example.

EXAMPLE 9  Two Graphs Appearing Identical on a Large Scale

Let f(x) = 3x* — 2x> + 3x? — 5x + 6 and g(x) = 3x*. Show that although f and g are
quite different for numerically small values of x, they are virtually identical for |x| very
large.

Solution  The graphs of f and g behave quite differently near the origin (Figure 2.48a),
but appear as virtually identical on a larger scale (Figure 2.48b).

500,000

300,000

100,000

X I 1 | I X
-20 -10 0 10 20

-5 —-100,000

(a) (b)

FIGURE 2.48 The graphs of f and g, (a) are distinct for|x| small, and (b) nearly
identical for |x|large (Example 9).

We can test that the term 3x* in f, represented graphically by g, dominates the polyno-
mial f for numerically large values of x by examining the ratio of the two functions as
x — £00. We find that

. f(x)_ o3t =2+ 3x2 —5x+ 6
lim = lim
Xx—>400 g(x) Xx—>+00 3yt

- 2,1 5 2
B xgrﬁx(l 3x * x? 3x3 * x4>
:1’

so that f and g are nearly identical for | x| large. ]
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EXERCISES 2.5

Infinite Limits

Find the limits in Exercises 1-12.

2 _
21 1im T 2 2
x° — 2x
a. x— 0" b. x—2"
c. x—>2° d x—2

e. What, if anything, can be said about the limit as x — 0?

2 _
2. limS X T2 ¢

X3 — 4x
a. x—2°" b. x— —2"
c. x—0 d x—1"

e. What, if anything, can be said about the limit as x — 0?

Find the limits in Exercises 23-26.

. 1 .5
1. xlg{)l* 3x 2. xlin(}* 2x
3 xlgrzl x—2 4'xli>n31+x—3
. 2x . 3x
S Mim 18 6 lim 10
7. lim % 8. lim 2_71
=7 (x —7) x=0 x*(x + 1)
. 2 . 2
9. a. xll%l+ PNTE b. xli)n(}_ PNTE
. 2 . 2
10. a. xll,r%+x1/5 b. xll,n(}—xl/s
. 4 . 1
11. )}1_1)1%) 2 12. XIER) B
Find the limits in Exercises 13—16.
13. lim  tanx 14. lim_ secx
x—(/2) x—(—m/2)"
15. lim (1 + cscf) 16. lim (2 — cot®)
6—0 6—0
Additional Calculations
Find the limits in Exercises 17-22.
17. lim 3 as
¥ =
a. x—2°" b. x—2"
c. x— 2" d x— -2
18. lim 5 1as
¥ -
a. x— 17" b. x— 1~
c. x—>—17" d x—-1"
2
19. 1im<"7 - %) as
a. x—0" b. x—0"
c. x— \3/5 d x——1
2
Loxt =1
20. lim ot 4 as
a. x— —2" b. x— -2~
c. x— 17 d x—0"

23. lim (2 - t%) as

a. t—0" b. t— 0~
. 1

24. hm<t37 + 7) as
a. t—0" b. t—0"
. 1 2

25. hm<x2/3 + = 1)2/3>as
a. x—0" b. x—0"
c. x— 17 d. x—>1"
. 1 1

26. hm<x1/3 - 1)4/3> as
a. x—0" b. x—0"
c. x— 1" d x—1

Graphing Rational Functions

Graph the rational functions in Exercises 27-38. Include the graphs

and equations of the asymptotes and dominant terms.

1
27.y=x_1 28.y=x+1
1 -3
29.y=2x+4 30.y=x_3
_x+3 . 2x
3l'y_x-l—2 32'y_x+1
x2 x2+ 1
33.y=x_1 34.y=x_1
xr—4 x2 =1
B y= 36 = T4
2 _ 3
37,y =51 38, p= % 1
X
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Inventing Graphs from Values and Limits

In Exercises 3942, sketch the graph of a function y = f(x) that satisfies
the given conditions. No formulas are required—just label the coordinate
axes and sketch an appropriate graph. (The answers are not unique, so
your graphs may not be exactly like those in the answer section.)

39. f(0) =0, f(1) =2, f(—=1) = =2, ll)llioof(x) = —1,and
lim f(x) =1
40. f(0) = 0, Yli)ri{loo f(x) =0, xli)rr01+ f(x) =2, and

xl_i)ng, flx) = -2

41. f(0) =0, lim fx) =0, lim_ fx) = li)lglrf(x) = 00,

im, fx) = —Oo,andxli)rpl_f(x) = —00
42. f(z) = laf(_l) = 03 1l)nolof(x) = Os 1i)rr(}+f(x) = o0,
lim /(x) = —00, and lim_/(x) = 1

Inventing Functions

In Exercises 43—46, find a function that satisfies the given conditions
and sketch its graph. (The answers here are not unique. Any function
that satisfies the conditions is acceptable. Feel free to use formulas de-
fined in pieces if that will help.)

43. lim f(x) = 0, lim f(x) = 00, and lim_f(x) = 00
X—>100 x—2 x—2"

44. lim g(x) =0, lim g(x) = —00,and lim_g(x) = o
x—>+00 x—3 x—3"

45. lim h(x) = —1, lim A(x) = 1, lim_hA(x) = —1, and
x—>—00 x—00 x—0

lim A(x) =1
x—0"
46. lim k(x) = 1, lim k(x) = 00, and lim_k(x) = —o0
x—>$00 x—1 x—1

The Formal Definition of Infinite Limit

Use formal definitions to prove the limit statements in Exercises 47-50.

47 lim L = 48. lim - = oo
x—0 xz x—0 |x|
49. lim — 2 = —o0 50. lim — 1 = oo

=3 (x — 3) x5 (x + 5)

Formal Definitions of Infinite One-Sided Limits
51. Here is the definition of infinite right-hand limit.

We say that f(x) approaches infinity as x approaches x
from the right, and write

lim = f(x) = oo,

X—>X(

if, for every positive real number B, there exists a corre-
sponding number 6 > 0 such that for all x

Xo<x<xg+ 8 = f(x) > B.

2.5 Infinite Limits and Vertical Asymptotes 123

Modify the definition to cover the following cases.

a. lim f(x) = o

X=X

b. lim f(x) = —o0
XX

c. lim f(x) = —o0
XX

Use the formal definitions from Exercise 51 to prove the limit state-
ments in Exercises 52-56.

|
52. lim — = oo
xl)n(’)h X

53. lim 1_ —00

x—0" X
. 1
54. lim = —00
x—2 X — 2
35 xli>n21+x -2 &0
. 1
56. lim =

=171 — x?

Graphing Terms

Each of the functions in Exercises 57-60 is given as the sum or differ-
ence of two terms. First graph the terms (with the same set of axes).
Then, using these graphs as guides, sketch in the graph of the function.

57.y=secx+%, fg<x<g
T T

58. y=secx — —, —5 <x<-
Y 2 2 2

1 T T

59. y=tanx + —, —5 <x< -+
Y 2 2 2

60.y=%—tanx, —g<x<g

Grapher Explorations—Comparing Graphs
with Formulas

Graph the curves in Exercises 61-64. Explain the relation between the
curve’s formula and what you see.

61.y=#
V4 — x?
-1

62. y= ———
V4 — x?

1

_ 23

63.y—x/ +xl/3

. T
64. y = sin
Y (x2 + 1)
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Continuity

Chapter 2: Limits and Continuity

80 P
[on

93
0}

(=)
(=)

0,

33
(=)

Distance fallen (m)
N
)

0 5 10
Elapsed time (sec)

FIGURE 2.49 Connecting plotted points
by an unbroken curve from experimental

data Oy, 0>, O3, ... for a falling object.

FIGURE 2.50 The function is continuous
on [0, 4] exceptatx = 1,x = 2, and
x = 4 (Example 1).

Continuity Two-sided
from the right continuity

_— from the left
m

y =/

Continuity

|
| |
I |
| |
| |
| | X
a c b

FIGURE 2.51 Continuity at points a, b,
and c.

When we plot function values generated in a laboratory or collected in the field, we often
connect the plotted points with an unbroken curve to show what the function’s values are
likely to have been at the times we did not measure (Figure 2.49). In doing so, we are as-
suming that we are working with a continuous function, so its outputs vary continuously
with the inputs and do not jump from one value to another without taking on the values
in between. The limit of a continuous function as x approaches ¢ can be found simply by
calculating the value of the function at ¢. (We found this to be true for polynomials in
Section 2.2.)

Any function y = f(x) whose graph can be sketched over its domain in one continu-
ous motion without lifting the pencil is an example of a continuous function. In this sec-
tion we investigate more precisely what it means for a function to be continuous. We also
study the properties of continuous functions, and see that many of the function types pre-
sented in Section 1.4 are continuous.

Continuity at a Point

To understand continuity, we need to consider a function like the one in Figure 2.50 whose
limits we investigated in Example 2, Section 2.4.

EXAMPLE 1 Investigating Continuity

Find the points at which the function f in Figure 2.50 is continuous and the points at which

f is discontinuous.

Solution  The function f is continuous at every point in its domain [0, 4] except at
x = 1,x = 2,and x = 4. At these points, there are breaks in the graph. Note the relation-
ship between the limit of f and the value of f at each point of the function’s domain.

Points at which f is continuous:

Atx =0, 11)1101+ f(x) = £(0).
Atx = 3, li_rg f(x) = f(3).

At0 < c<4,c# 1,2, lim f(x) = f(c).
X—c

Points at which f is discontinuous:

Atx =1, lim1 f(x) does not exist.
Xx—>

Atx = 2, lir%f(x) =1,butl # f(2).
xX—>

Atx = 4, lin} f(x) = 1,butl # f(4).
Xx—>

Atc < 0,c > 4, these points are not in the domain of f. ]

To define continuity at a point in a function’s domain, we need to define continuity at
an interior point (which involves a two-sided limit) and continuity at an endpoint (which
involves a one-sided limit) (Figure 2.51).
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FIGURE 2.52 A function
that is continuous at every
domain point (Example 2).

y = U)

or

FIGURE 2.53 A function
that is right-continuous,
but not left-continuous, at
the origin. It has a jump
discontinuity there
(Example 3).
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DEFINITION Continuous at a Point

Interior point: A function y = f(x) is continuous at an interior point ¢ of its
domain if

lim f(x) = f(c).
X—c
Endpoint: A function y = f(x) is continuous at a left endpoint a or is

continuous at a right endpoint b of its domain if

li%m+ f(x) = f(a) or lin;}* f(x) = f(b), respectively.

If a function f is not continuous at a point ¢, we say that f is discontinuous at ¢ and ¢
is a point of discontinuity of f. Note that ¢ need not be in the domain of f.

A function f is right-continuous (continuous from the right) at a point x = c¢ in its
domain if lim,—.+ f(x) = f(c). It is left-continuous (continuous from the left) at ¢ if
lim,—. f(x) = f(c). Thus, a function is continuous at a left endpoint a of its domain if it
is right-continuous at ¢ and continuous at a right endpoint b of its domain if it is left-
continuous at . A function is continuous at an interior point ¢ of its domain if and only if
it is both right-continuous and left-continuous at ¢ (Figure 2.51).

EXAMPLE 2 A Function Continuous Throughout Its Domain

The function f(x) = V4 — x? is continuous at every point of its domain, [—2, 2] (Figure
2.52),including x = —2, where f is right-continuous, and x = 2, where f is left-continuous.
]

EXAMPLE 3  The Unit Step Function Has a Jump Discontinuity

The unit step function U(x), graphed in Figure 2.53, is right-continuous at x = 0, but is
neither left-continuous nor continuous there. It has a jump discontinuity at x = 0. [

We summarize continuity at a point in the form of a test.

Continuity Test
A function f(x) is continuous at x = ¢ if and only if it meets the following three

conditions.
1.  f(c) exists (c lies in the domain of f)
2. limy—, f(x) exists (f has a limit as x — c¢)

3. lime, f(x) = f(c) (the limit equals the function value)

For one-sided continuity and continuity at an endpoint, the limits in parts 2 and 3 of
the test should be replaced by the appropriate one-sided limits.
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y
41 *~—
y =intx
3 or
y =[x
2 *——o0
1 e—o
I L I I I X
-1 1 2 3 4
~—
—_— 2k

FIGURE 2.54 The greatest integer
function is continuous at every
noninteger point. It is right-continuous,
but not left-continuous, at every integer
point (Example 4).

EXAMPLE 4  The Greatest Integer Function

The function y = |x | or y = intx, introduced in Chapter 1, is graphed in Figure 2.54. It
is discontinuous at every integer because the limit does not exist at any integer n:
lim intx =n — 1 and lim intx = n
X—n X_)}’l
so the left-hand and right-hand limits are not equal as x — n. Since intn = n, the greatest
integer function is right-continuous at every integer n (but not left-continuous).
The greatest integer function is continuous at every real number other than the inte-
gers. For example,
lim intx =1 = int 1.5.

x—1.5

In general, if n — 1 < ¢ < n, n an integer, then
limintx =n — 1 = intc. [
x—>c

Figure 2.55 is a catalog of discontinuity types. The function in Figure 2.55a is contin-
uous at x = 0. The function in Figure 2.55b would be continuous if it had f(0) = 1. The
function in Figure 2.55¢ would be continuous if f(0) were 1 instead of 2. The discontinu-
ities in Figure 2.55b and c are removable. Each function has a limit as x — 0, and we can
remove the discontinuity by setting f(0) equal to this limit.

The discontinuities in Figure 2.55d through f are more serious: lim,—q f(x) does not
exist, and there is no way to improve the situation by changing f at 0. The step function in
Figure 2.55d has a jump discontinuity: The one-sided limits exist but have different val-
ues. The function f(x) = 1/x? in Figure 2.55¢ has an infinite discontinuity. The function
in Figure 2.55f has an oscillating discontinuity: It oscillates too much to have a limit as
x—0.

y=fx y=f) v =f(x)
y =f(x)
—

/! /° Ve °

(a) (©) )

y y
y=fe = y=sin 3
/\ .
(e) )

FIGURE 2.55 The function in (a) is continuous at x = 0; the functions in (b) through (f)
are not.
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FIGURE 2.56 The function y = 1/x s
continuous at every value of x except

x = 0. It has a point of discontinuity at
x = 0 (Example 5).
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Continuous Functions

A function is continuous on an interval if and only if it is continuous at every point of the
interval. For example, the semicircle function graphed in Figure 2.52 is continuous on the
interval [—2, 2], which is its domain. A continuous function is one that is continuous at
every point of its domain. A continuous function need not be continuous on every interval.
For example, y = 1/x is not continuous on [—1, 1] (Figure 2.56), but it is continuous over
its domain (—o0, 0) U (0, 00).

EXAMPLE 5  Identifying Continuous Functions

(a) The function y = 1/x (Figure 2.56) is a continuous function because it is continuous
at every point of its domain. It has a point of discontinuity at x = 0, however, because
it is not defined there.

(b) The identity function f(x) = x and constant functions are continuous everywhere by
Example 3, Section 2.3. ]

Algebraic combinations of continuous functions are continuous wherever they are
defined.

THEOREM 9 Properties of Continuous Functions

If the functions f and g are continuous at x = ¢, then the following combinations
are continuous at x = c.

1. Sums: f+g

2. Differences: f—g

3. Products: fg

4. Constant multiples: k- f, for any number &

5. Quotients: f/g provided g(c) # 0

6. Powers: /7, provided it is defined on an open interval

containing ¢, where  and s are integers

Most of the results in Theorem 9 are easily proved from the limit rules in Theorem 1,
Section 2.2. For instance, to prove the sum property we have

lim(f + g)(x) = lim(f(x) + g(x))

= lim f(x) + lim g(x), Sum Rule, Theorem 1
x—c¢ x—c¢

= f(c) + g(c) Continuity of f, gat ¢

= (f +g)o).

This shows that f + g is continuous.

EXAMPLE 6  Polynomial and Rational Functions Are Continuous

(a) Every polynomial P(x) = a,x" + a,—1x" ' + .-+ + @y is continuous because
lim P(x) = P(c) by Theorem 2, Section 2.2.
X—>c
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(b) If P(x) and Q(x) are polynomials, then the rational function P(x)/Q(x) is continuous
wherever it is defined (Q(c¢) # 0) by the Quotient Rule in Theorem 9.

EXAMPLE 7  Continuity of the Absolute Value Function

The function f(x) = |x|is continuous at every value of x. If x > 0, we have f(x) = x, a
polynomial. If x < 0, we have f(x) = —x, another polynomial. Finally, at the origin,
lim,—o |x| = 0 = |0]. ]

The functions y = sinx and y = cosx are continuous at x = 0 by Example 6 of
Section 2.2. Both functions are, in fact, continuous everywhere (see Exercise 62). It fol-
lows from Theorem 9 that all six trigonometric functions are then continuous wherever
they are defined. For example, y = tanx is continuous on --- U (—7/2,7/2)U
(m/2,37/2)U ---.

Composites

All composites of continuous functions are continuous. The idea is that if f(x) is continu-
ous at x = ¢ and g(x) is continuous at x = f(c), then g o f is continuous at x = ¢ (Figure
2.57). In this case, the limit as x — ¢ is g(f(c)).

g-f

Continuous at ¢

8
Continuous m
R atc . at f(c) .
c f© 8(f(©)

FIGURE 2.57 Composites of continuous functions are continuous.

THEOREM 10 Composite of Continuous Functions

If f is continuous at ¢ and g is continuous at f(c), then the composite g ° f is
continuous at c.

Intuitively, Theorem 10 is reasonable because if x is close to ¢, then f(x) is close to
f(c), and since g is continuous at f(c), it follows that g(f(x)) is close to g(f(c)).

The continuity of composites holds for any finite number of functions. The only re-
quirement is that each function be continuous where it is applied. For an outline of the
proof of Theorem 10, see Exercise 6 in Appendix 2.

EXAMPLE 8  Applying Theorems 9 and 10

Show that the following functions are continuous everywhere on their respective domains.

23

@ y=Val-2x-5 b)y=1"3
x—2 xsinx

0 y= d y= | 50E
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y Solution

(a) The square root function is continuous on [0, 00) because it is a rational power of the
0.4 continuous identity function f(x) = x (Part 6, Theorem 9). The given function is then
the composite of the polynomial f(x) = x> — 2x — 5 with the square root function
gl = V.

0.2+ (b) The numerator is a rational power of the identity function; the denominator is an
everywhere-positive polynomial. Therefore, the quotient is continuous.

o (c) The quotient (x — 2)/ (x? — 2) is continuous for all x # :t\ﬁ, and the function is

P — — x the composition of this quotient with the continuous absolute value function (Exam-
ple 7).

FIGURE 2.58 The graph suggests that (d) Because the sine function is everywhere-continuous (Exercise 62), the numerator

y = |(xsinx)/(x? + 2)] is continuous term x sin x is the product of continuous functions, and the denominator term x? + 2

(Example 8d). is an everywhere-positive polynomial. The given function is the composite of a quo-

tient of continuous functions with the continuous absolute value function (Figure

2.58). |

Continuous Extension to a Point

The function y = (sinx)/x is continuous at every point except x = 0. In this it is like the
function y = 1/x. But y = (sinx)/x is different from y = 1/x in that it has a finite limit
as x — 0 (Theorem 7). It is therefore possible to extend the function’s domain to include the
point x = 0 in such a way that the extended function is continuous at x = 0. We define

sin x
P x#0
F(x) =
) 1, x = 0.
The function F(x) is continuous at x = 0 because
lim 53 = F(0)
x—0
(Figure 2.59).
y y

(@) (b)

FIGURE 2.59 The graph (a) of f(x) = (sinx)/x for —7/2 = x = /2 does not include
the point (0, 1) because the function is not defined at x = 0. (b) We can remove the
discontinuity from the graph by defining the new function F(x) with £(0) = 1 and

F(x) = f(x) everywhere else. Note that F(0) = r11_1)110 f(x).
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FIGURE 2.60 (a) The graph of
f(x) and (b) the graph of its
continuous extension F(x)
(Example 9).

More generally, a function (such as a rational function) may have a limit even at a
point where it is not defined. If f(c) is not defined, but lim,—,. f(x) = L exists, we can de-
fine a new function F(x) by the rule

Flx) = {{(x),

if x is in the domain of /'
ifx = c.

The function F is continuous at x = c. It is called the continuous extension of f to
x = c. For rational functions f, continuous extensions are usually found by canceling
common factors.

EXAMPLE 9
Show that

A Continuous Extension

X2+ x—6
f(x)_ x2_4

has a continuous extension to x = 2, and find that extension.

Solution  Although f(2) is not defined, if x # 2 we have
f(x):x2+x—6:(x_2)(x+3):x+3
x> — 4 (x—2)(x+2) x+2
The new function
_x+3
Flx) = x+ 2

is equal to f(x) for x # 2, but is continuous at x = 2, having there the value of 5/4. Thus
F is the continuous extension of f tox = 2, and

x2+x—6

lim *5- =)}L1112f(x)=%.

x—2 X
The graph of f is shown in Figure 2.60. The continuous extension F has the same graph
except with no hole at (2, 5/4). Effectively, F is the function f with its point of discontinu-
ity at x = 2 removed. [

Intermediate Value Theorem for Continuous Functions

Functions that are continuous on intervals have properties that make them particularly use-
ful in mathematics and its applications. One of these is the Intermediate Value Property. A
function is said to have the Intermediate Value Property if whenever it takes on two val-
ues, it also takes on all the values in between.

THEOREM 11  The Intermediate Value Theorem for Continuous Functions

A function y = f(x) that is continuous on a closed interval [a, b] takes on every
value between f(a) and f(b). In other words, if yy is any value between f(a) and
f(b), then yo = f(c) for some ¢ in [a, b].
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3 — o
2_
1
& | | | x
0 1 2 3 4

FIGURE 2.61 The function

2x—2, 1=x<2
f(x)_{3, 2=x=4
does not take on all values between
f(1) = 0 and f(4) = 3; it misses all the
values between 2 and 3.
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f(b)

Yo

fla)

Geometrically, the Intermediate Value Theorem says that any horizontal line y = y,
crossing the y-axis between the numbers f(a) and f(b) will cross the curve y = f(x) at
least once over the interval [a, b].

The proof of the Intermediate Value Theorem depends on the completeness property
of the real number system and can be found in more advanced texts.

The continuity of f on the interval is essential to Theorem 11. If f is discontinuous at
even one point of the interval, the theorem’s conclusion may fail, as it does for the function
graphed in Figure 2.61.

A Consequence for Graphing: Connectivity Theorem 11 is the reason the graph of a
function continuous on an interval cannot have any breaks over the interval. It will be
connected, a single, unbroken curve, like the graph of sin x. It will not have jumps like the
graph of the greatest integer function (Figure 2.54) or separate branches like the graph of
1/x (Figure 2.56).

A Consequence for Root Finding We call a solution of the equation f(x) = 0 a root of
the equation or zero of the function f. The Intermediate Value Theorem tells us that if f is
continuous, then any interval on which f changes sign contains a zero of the function.

In practical terms, when we see the graph of a continuous function cross the horizon-
tal axis on a computer screen, we know it is not stepping across. There really is a point
where the function’s value is zero. This consequence leads to a procedure for estimating
the zeros of any continuous function we can graph:

1. Graph the function over a large interval to see roughly where the zeros are.

2. Zoom in on each zero to estimate its x-coordinate value.

You can practice this procedure on your graphing calculator or computer in some of
the exercises. Figure 2.62 shows a typical sequence of steps in a graphical solution of the
equation x> — x — 1 = 0.
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5 1
1 1 1 1 1 1 I 1.6
-2 -1
(a) (b)
0.02 0.003
1.320 L L L L 111330 1.3240 . . L——=111.3248
-0.02 -0.003
©) )

FIGURE 2.62 Zooming in on a zero of the function f(x) = x> — x — 1. The zero is near
x = 1.3247.
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EXERCISES 2.6

Continuity from Graphs Exercises 5-10 are about the function

In Exercises 1-4, say whether the function graphed is continuous on -1, -1=x<0

[—1, 3]. If not, where does it fail to be continuous and why? 2x, 0<x<1
1. 2. fx) = L, x=1

—2x + 4, I<x<2
y =/ y = g(x) 0, 2<x<3

2 —f\-/ 2 /\O graphed in the accompanying figure.
[ ]
/ g -

| | | | X | | | | x
-1 0 1 2 3 -1 0 1 2 3
3 4.

y y
y = hx) y = k(x) -\ 0 1 2 3
— 2 _ -1
1+ 1 / y=x*-1

I I I L 5y / 4 | L 5y The graph for Exercises 5-10.

-1 0 1 2 3 -1 0 1 2 3
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5. a. Does f(—1) exist?
b. Does lim,— _;+ f(x) exist?
¢. Does lim,—_+ f(x) = f(—1)?
d. Is f continuous at x = —1?
6. a. Does f(1) exist?
b. Does lim,— f(x) exist?
¢. Does lim,—; f(x) = f(1)?
d. Is f continuous at x = 1?
7. a. Is f defined at x = 27 (Look at the definition of f.)
b. Is f continuous at x = 27?

8. At what values of x is f continuous?

9. What value should be assigned to f(2) to make the extended func-
tion continuous atx = 27?

10. To what new value should f(1) be changed to remove the discon-
tinuity?

33. lim cos (*)
=0 V19 — 3 sec 2t
34. lim Vesc’x + 5V3tanx

X

Continuous Extensions

Applying the Continuity Test

At which points do the functions in Exercises 11 and 12 fail to be con-
tinuous? At which points, if any, are the discontinuities removable?
Not removable? Give reasons for your answers.

12. Exercise 2, Section 2.4

Exercise

Exercise

At what points are the functions in Exercises 13-28 continuous?

35. Define g(3) in a way that extends g(x) = (x> — 9)/(x — 3) to
be continuous at x = 3.

36. Define 4(2) in a way that extends A(¢) = (+* + 3t — 10)/(t — 2)
to be continuous at = 2.

37. Define f(1) in a way that extends f(s) = (s® — 1)/(s> — 1) to
be continuous ats = 1.

38. Define g(4) in a way that extends g(x) = (x* — 16)/
(x? — 3x — 4) to be continuous at x = 4.

39. For what value of a is

=1, x<3
o) = {2ax, x =3
continuous at every x?
40. For what value of b is
X, x < =2
gx) = {bx2, ~

1 1
13.y:m—3x 14.y:m+
x + 1 x+3
15. y= —— 16. y = V—+———
YT 4+ 3 YT - 10
2
17. y = |x — 1| + sinx 18.y=|x|1+17%
COS X x+2
19. y = —— 20. y = o5y
21. y = csc2x 22.y=tan%
23 _ xtanx 24 _ Vxt + 1
Y X2+ 1 Y 1 + sin®x
25. y = V2x + 3 26. y=V3x—1

27. y = (2x — 1)/ 28. y= (2 —x)'P°

continuous at every x?

Composite Functions

Find the limits in Exercises 29-34. Are the functions continuous at the
point being approached?

29. lim sin (x — sinx)
X

30. tlg% sin (% cos (tan t))

31. lim1 sec (ysec’y — tan’y — 1)
y—)

32. lim tan (E cos (sinxl/3))
x—0 4

In Exercises 4144, graph the function f to see whether it appears to

have a continuous extension to the origin. If it does, use Trace and
Zoom to find a good candidate for the extended function’s value at
x = 0. If the function does not appear to have a continuous exten-
sion, can it be extended to be continuous at the origin from the right or
from the left? If so, what do you think the extended function’s value(s)
should be?

X [x] _
a1, fy =101 a2, f(r) =11

sin x
|x]

43. f(x) = 44. f(x) = (1 + 2x)'7

Theory and Examples

45. A continuous function y = f(x) is known to be negative at x = 0
and positive at x = 1. Why does the equation f(x) = 0 have at
least one solution between x = 0 and x = 1? Illustrate with a
sketch.

46. Explain why the equation cos x = x has at least one solution.

47. Roots of a cubic Show that the equation x> — 15x + 1 = 0 has
three solutions in the interval [—4, 4].

48. A function value Show that the function F(x) = (x — a)’+
(x — b)* + x takes on the value (¢ + b)/2 for some value of x.

49. Solving an equation If f(x) = x> — 8x + 10, show that there
are values ¢ for which f(c) equals (a) m; (b) —\/g; (c)
5,000,000.

Copyright © 2005 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Exercise



http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html
tcu0206b.html
tcu0206b.html
tcu0206c.html
tcu0206c.html
tcu0206d.html
tcu0206d.html
tcu0206e.html
tcu0206e.html
tcu0206e.html
tcu0206e.html
tcu0206f.html
tcu0206f.html

134

50.

51.

52.

53.

54.

5S.

56.

57.

Chapter 2: Limits and Continuity

Explain why the following five statements ask for the same infor-
mation.

a. Find the roots of f(x) = x> — 3x — 1.

b. Find the x-coordinates of the points where the curve y = x
crosses the line y = 3x + 1.

3

¢. Find all the values of x for which x> — 3x = 1.

d. Find the x-coordinates of the points where the cubic curve
y = x> — 3xcrosses the line y = 1.

e. Solve the equation x> — 3x — 1 = 0.

Removable discontinuity Give an example of a function f(x) that
is continuous for all values of x except x = 2, where it has a re-
movable discontinuity. Explain how you know that f is discontinu-
ous at x = 2, and how you know the discontinuity is removable.

Nonremovable discontinuity Give an example of a function
g(x) that is continuous for all values of x except x = —1, where it
has a nonremovable discontinuity. Explain how you know that g is
discontinuous there and why the discontinuity is not removable.

A function discontinuous at every point

a. Use the fact that every nonempty interval of real numbers
contains both rational and irrational numbers to show that the
function

1, ifx is rational

o=

is discontinuous at every point.

0, ifx is irrational

b. Is f right-continuous or left-continuous at any point?

If functions f(x) and g(x) are continuous for 0 = x = 1, could
f(x)/g(x) possibly be discontinuous at a point of [0, 1]? Give rea-
sons for your answer.

If the product function 4(x) = f(x) - g(x) is continuous at x = 0,
must f(x) and g(x) be continuous at x = 0? Give reasons for your
answer.

Discontinuous composite of continuous functions Give an ex-
ample of functions f and g, both continuous at x = 0, for which
the composite f © g is discontinuous at x = 0. Does this contra-
dict Theorem 10? Give reasons for your answer.

Never-zero continuous functions Is it true that a continuous
function that is never zero on an interval never changes sign on
that interval? Give reasons for your answer.

58.

59.

60.

61.

62.

Stretching a rubber band Is it true that if you stretch a rubber
band by moving one end to the right and the other to the left,
some point of the band will end up in its original position? Give
reasons for your answer.

A fixed point theorem Suppose that a function f is continuous
on the closed interval [0, 1] and that 0 = f(x) = 1 for every x in
[0, 1]. Show that there must exist a number ¢ in [0, 1] such that
f(c) = ¢ (cis called a fixed point of f).

The sign-preserving property of continuous functions Let f
be defined on an interval (a, b) and suppose that f(c) # 0 at
some ¢ where f is continuous. Show that there is an interval
(¢ — 8, ¢ + §8) about ¢ where f has the same sign as f(c). Notice
how remarkable this conclusion is. Although f is defined through-
out (a, b), it is not required to be continuous at any point except c.
That and the condition f(c) # 0 are enough to make f different
from zero (positive or negative) throughout an entire interval.

Prove that f is continuous at ¢ if and only if
lim f(c + h) = f(c).
h—0

Use Exercise 61 together with the identities

sin(h + ¢) =sinhcosc + coshsinc,

cos(h + ¢) = coshcosc — sinhsinc

to prove that f(x) = sinx and g(x) = cosx are continuous at
every point x = c.

Solving Equations Graphically

Use a graphing calculator or computer grapher to solve the equations
in Exercises 63—70.

63.
64.
65.
66.
67.
68.
69.
70.

X =3x—-1=0
23 =22 —2x+1=0

x(x — 1)> =1 (one root)
xt=2
Vi+Vitx=4

x> = 15x + 1 =0 (three roots)
cosx = x (one root). Make sure you are using radian mode.

2sinx = x (three roots). Make sure you are using radian mode.
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Tangents and Derivatives

This section continues the discussion of secants and tangents begun in Section 2.1. We cal-
culate limits of secant slopes to find tangents to curves.

What Is a Tangent to a Curve?

For circles, tangency is straightforward. A line L is tangent to a circle at a point P if L
passes through P perpendicular to the radius at P (Figure 2.63). Such a line just fouches
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FIGURE 2.63 L is tangent to the
circle at P if it passes through P
perpendicular to radius OP.

HISTORICAL BIOGRAPHY

Pierre de Fermat
(1601-1665)
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the circle. But what does it mean to say that a line L is tangent to some other curve C at a
point P? Generalizing from the geometry of the circle, we might say that it means one of
the following:

1. L passes through P perpendicular to the line from P to the center of C.

2. L passes through only one point of C, namely P.

3. L passes through P and lies on one side of C only.

Although these statements are valid if C is a circle, none of them works consistently for

more general curves. Most curves do not have centers, and a line we may want to call tan-
gent may intersect C at other points or cross C at the point of tangency (Figure 2.64).

L c L c
C L P
P
P
L meets C only at P L is tangent to C at P but L is tangent to C at P but lies on
but is not tangent to C. meets C at several points. two sides of C, crossing C at P.

FIGURE 2.64 Exploding myths about tangent lines.

To define tangency for general curves, we need a dynamic approach that takes into ac-
count the behavior of the secants through P and nearby points QO as Q moves toward P
along the curve (Figure 2.65). It goes like this:

1. We start with what we can calculate, namely the slope of the secant PQ.

2. Investigate the limit of the secant slope as Q approaches P along the curve.

3. Ifthe limit exists, take it to be the slope of the curve at P and define the tangent to the
curve at P to be the line through P with this slope.

This approach is what we were doing in the falling-rock and fruit fly examples in Section
2.1.

Secants

~—
0

Tangen:/'

Secants

FIGURE 2.65 The dynamic approach to tangency. The tangent to the curve at P is the line
through P whose slope is the limit of the secant slopes as Q — P from either side.
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EXAMPLE 1  Tangent Line to a Parabola

Find the slope of the parabola y = x? at the point P(2, 4). Write an equation for the tan-
gent to the parabola at this point.

Solution ~ We begin with a secant line through P(2, 4) and O(2 + A, (2 + h)*) nearby.
We then write an expression for the slope of the secant PQ and investigate what happens to
the slope as Q approaches P along the curve:

Secan sl Ay 2+ R -2 Ry ah+4-4
e€cant slope = AX = h = h

_h+4n

P =h+ 4.

If > 0, then Q lies above and to the right of P, as in Figure 2.66. If & < 0, then Q lies to
the left of P (not shown). In either case, as Q approaches P along the curve, /4 approaches
zero and the secant slope approaches 4:

lim (h + 4) = 4.
Jim ( )
We take 4 to be the parabola’s slope at P.
The tangent to the parabola at P is the line through P with slope 4:

y = 4 + 4(x - 2) Point-slope equation
y=4x — 4. u

Q+h*-4_
h

y=x Secant slope is h+ 4.

02 + h, 2+ h)?

Tangent slope = 4

Ay=Q2+h?>—4

P(2,4)

} Ax=nh
0 /2 2

h

+ =A==

NOT TO SCALE

FIGURE 2.66 Finding the slope of the parabola y = x? at the point P(2, 4) (Example 1).

Finding a Tangent to the Graph of a Function

The problem of finding a tangent to a curve was the dominant mathematical problem of
the early seventeenth century. In optics, the tangent determined the angle at which a ray of
light entered a curved lens. In mechanics, the tangent determined the direction of a body’s
motion at every point along its path. In geometry, the tangents to two curves at a point of
intersection determined the angles at which they intersected. To find a tangent to an arbi-
trary curve y = f(x) at a point P(xy, f(xo)), we use the same dynamic procedure. We cal-
culate the slope of the secant through P and a point Q(xo + A, f(xo + /)). We then inves-
tigate the limit of the slope as 2 — 0 (Figure 2.67). If the limit exists, we call it the slope of
the curve at P and define the tangent at P to be the line through P having this slope.
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DEFINITIONS Slope, Tangent Line
The slope of the curve y = f(x) at the point P(xy, f(xo)) is the number

Yoh) -
Ferg + ) — fxo) m = lim I })l fxo)

y =/
O(xg + h, flxg+ h)

(provided the limit exists).

The tangent line to the curve at P is the line through P with this slope.

|

|

|
0 o ot h Whenever we make a new definition, we try it on familiar objects to be sure it is con-
sistent with results we expect in familiar cases. Example 2 shows that the new definition
of slope agrees with the old definition from Section 1.2 when we apply it to nonvertical

lines.

FIGURE 2.67 The slope of the tangent
xo + h) — f(x
line at P is lim M.
h—0 h

EXAMPLE 2 Testing the Definition

Show that the line y = mx + b is its own tangent at any point (xq, mxy + b).

Solution ~ We let f(x) = mx + b and organize the work into three steps.
1. Find f(xo) and f(xo + h).
f(x0) = mxy + b
flxo + h) =mlxg + h) + b =mxy + mh + b
2. Find the slope }}i_r)r%)(f(xo + h) — f(x0))/h.

flxo + 1) — f(xo) . (mxy + mh + b) — (mxy + b)
m = lim
h—0 h h—0 h

3. Find the tangent line using the point-slope equation. The tangent line at the point
(x9, mxy + b)is

y = (mxy + b) + m(x — xp)
vy =mxg+ b+ mx — mxg

y=mx + b. [

Let’s summarize the steps in Example 2.

Finding the Tangent to the Curve y = f(x) at (xo, Vo)
1. Calculate f(xo) and f(xo + h).

2. Calculate the slope
o fGo + h) = f(xo)
m = lim .
h—0 h

3. If the limit exists, find the tangent line as

y =yo + mx — xg).
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EXAMPLE 3

(b) Where does the slope equal —1/4?

Slope and Tangentto y = 1/x, x # 0

(a) Find the slope of the curve y = I/xatx = a # 0.

(c) What happens to the tangent to the curve at the point (a, 1/a) as a changes?

Solution
(a) Here f(x) = 1/x. The slope at (a, 1/a) is

1 1
. fla+ h) — f(a) a+h 4
llm—:llm—
h—0 h h—0 h
_ l1a—(a+h)
TS0 ala + k)
= fim — "
h—0 ha(a+h)
= lim —1 - =-1
h—0 ala + h) a?’

Notice how we had to keep writing “lim;,—.(” before each fraction until the stage
where we could evaluate the limit by substituting # = 0. The number a may be posi-
tive or negative, but not 0.

(b) The slope of y = 1/x at the point where x = a is —1/a*. It will be —1/4 provided that
1 _ 1
PR

This equation is equivalent to a®> = 4, so @ = 2 or ¢ = —2. The curve has slope

(©)

—1/4 at the two points (2, 1/2) and (=2, —1/2) (Figure 2.68).

Notice that the slope —1/a? is always negative if a # 0. As a — 0", the slope ap-
proaches —o0 and the tangent becomes increasingly steep (Figure 2.69). We see this
situation again as a — 0~ . As @ moves away from the origin in either direction, the
slope approaches 0~ and the tangent levels off. [

_1
Y=

1
slope is ——
)

o1
1 -1
slope is —

FIGURE 2.69 The tangent slopes, steep
near the origin, become more gradual as
the point of tangency moves away.

FIGURE 2.68 The two tangent lines to
v = 1/x having slope —1/4 (Example 3).
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Rates of Change: Derivative at a Point

The expression

flxo + 1) — f(xo)
h

is called the difference quotient of f at x, with increment /. If the difference quotient
has a limit as /& approaches zero, that limit is called the derivative of f at x,. If we inter-
pret the difference quotient as a secant slope, the derivative gives the slope of the curve
and tangent at the point where x = x;. If we interpret the difference quotient as an average
rate of change, as we did in Section 2.1, the derivative gives the function’s rate of change
with respect to x at the point x = x(. The derivative is one of the two most important math-
ematical objects considered in calculus. We begin a thorough study of it in Chapter 3. The
other important object is the integral, and we initiate its study in Chapter 5.

EXAMPLE 4  Instantaneous Speed (Continuation of Section 2.1,
Examples 1 and 2)

In Examples 1 and 2 in Section 2.1, we studied the speed of a rock falling freely from rest
near the surface of the earth. We knew that the rock fell y = 162 feet during the first 7 sec,
and we used a sequence of average rates over increasingly short intervals to estimate the
rock’s speed at the instant = 1. Exactly what was the rock’s speed at this time?

Solution  We let f(f) = 16¢. The average speed of the rock over the interval between
t =1landt =1 + hseconds was

f(L+h) = f(1) _ 1601 + h)? — 16(1)? _ 16(h% + 2h)

7 7 7 = 16(h + 2).
The rock’s speed at the instant # = 1 was
}}i_r)r%) 16(h + 2) = 16(0 + 2) = 32 ft/sec.
Our original estimate of 32 ft/ sec was right. [

Summary

We have been discussing slopes of curves, lines tangent to a curve, the rate of change of a
function, the limit of the difference quotient, and the derivative of a function at a point. All
of these ideas refer to the same thing, summarized here:

The slope of y = f(x) at x = x
The slope of the tangent to the curve y = f(x) at x = xo
The rate of change of f(x) with respect to x at x = x;

L .

The derivative of f at x = xp

flxo + h) — f(xo0)
h

5. The limit of the difference quotient, }}imo
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EXERCISES 2.7

Slopes and Tangent Lines

In Exercises 14, use the grid and a straight edge to make a rough esti-
mate of the slope of the curve (in y-units per x-unit) at the points P;
and P,. Graphs can shift during a press run, so your estimates may be
somewhat different from those in the back of the book.

1. y 2. y
|
pA
b 4 2
i
{ ! \
/ | /
1 \ X
/ Sitatsamie
\ A \
P LW \
0 X
//
/
3 y 4. y
[ = \\ / - \
/ \-.4 s}
1 b2 I - / \ o)
X / N o] xr
/ 1 \
/ / \
/o S S W) o

In Exercises 5-10, find an equation for the tangent to the curve at the
given point. Then sketch the curve and tangent together.

5.y=4-x% (-1,3) 6. y=(—-12+1 (L1

7.y =2Vx, (1,2) 8.y=—, (1,1

9. y=x% (-2,-8)

In Exercises 11-18, find the slope of the function’s graph at the given
point. Then find an equation for the line tangent to the graph there.

11. f(x) =x*+ 1, (2,5) 12. f(x) =x — 2x2, (1,-1)
13. g(x) = x%Z (3,3)

15. h(r) = 3, (2,8)
17. f(x) = Vi, (4,2)

14. g(x) = % (2,2)

16. h(r) = 3 + 31, (1,4)

18. f(x) = Vx + 1, (8,3)

In Exercises 19-22, find the slope of the curve at the point indicated.
19. y =5x%, x= -1 20 y=1-x% x=2

21.y=x% x=3 22.y=;;},

x=0

Tangent Lines with Specified Slopes

At what points do the graphs of the functions in Exercises 23 and 24

have horizontal tangents?

|23. flx) = x>+ 4x — 1 24. g(x) = x* — 3x

25. Find equations of all lines having slope —1 that are tangent to the
curve y = 1/(x — 1).

26. Find an equation of the straight line having slope 1/4 that is tan-
gent to the curve y = Vx.

Rates of Change

27. Object dropped from a tower An object is dropped from the
top of a 100-m-high tower. Its height above ground after ¢ sec is
100 — 4.9/ m. How fast is it falling 2 sec after it is dropped?

28. Speed of a rocket At ¢ sec after liftoff, the height of a rocket is
3¢% ft. How fast is the rocket climbing 10 sec after liftoff?

29. Circle’s changing area What is the rate of change of the area of a cir-
cle (4 = mr?) with respect to the radius when the radius is » = 3?

30. Ball’s changing volume What is the rate of change of the vol-
ume of a ball (V = (4/3)mr>) with respect to the radius when the
radiusis» = 27

Testing for Tangents
31. Does the graph of
2 .
_ [x*sin(1/x), x#0
Jlx) = {o, x=0
have a tangent at the origin? Give reasons for your answer.
32. Does the graph of
_ Jxsin(1/x), x#0
glx) = { 0. =0

have a tangent at the origin? Give reasons for your answer.

Vertical Tangents
We say that the curve y = f(x) has a vertical tangent at the point
where x = xg if limj—o (f(xo + #) — f(x0))/h = 00 or —00.

Vertical tangent at x = 0 (see accompanying figure):

. fO+h) —f0) B9
lim = lim
h—0 h h—0 h
= lim R
h—0 h2/3
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34. Does the graph of

0, x<O0
U =
() {l,xZO

have a vertical tangent at the point (0, 1)? Give reasons for your
answer.

0 a. Graph the curves in Exercises 35-44. Where do the graphs
appear to have vertical tangents?
b. Confirm your findings in part (a) with limit calculations. But
before you do, read the introduction to Exercises 33 and 34.
VERTICAL TANGENT AT ORIGIN 35. y =a"° 36. y = x*°
37. y = X3 38. y = x5
No vertical tangent at x = 0 (see next figure): 39, 5 = 425 — 2y 40. y = 5B 552/
Jim g0+ h})l it (U Jim hmh_ 0 41y =x - (x - '3 2. y=xP+x-1"
-0 -0 —\/|;| x=0
43. y = ’ _ 4. y =V |4 —
~ fim — 4 {\/)E x>0 y=Vi4 -

. o . COMPUTER EXPLORATIONS
does not exist, because the limit is 0O from the right and —00 from
the left. Graphing Secant and Tangent Lines

Use a CAS to perform the following steps for the functions in Exer-
cises 45-48.

a. Plot y = f(x) over the interval (xg — 1/2) = x = (xo + 3).
b. Holding x, fixed, the difference quotient

. a(h) :f(xo+h})l—f(xo)

ol
NO VERTICAL TANGENT AT ORIGIN

at xo becomes a function of the step size /. Enter this function

33. Does the graph of into your CAS workspace.

¢. Find the limit of g as 4 — 0.

~1, x<0 : .
(x) = 0 ) =0 d. Define the secant lines y = f(x¢) + g+ (x — xo) forh = 3,2,
Jlx) = C T and 1. Graph them together with f and the tangent line over the
I x>0 interval in part (a).
have a vertical tangent at the origin? Give reasons for your answer. 45. f(x) =x>+2x, xo=0 46. f(x) =x + %, x =1

47. f(x) = x + sin(2x), xo = 7/2
48. f(x) = cosx + 4sin(2x), xo =7
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Chapter

. What is the average rate of change of the function g(#) over the in-
terval from ¢t = a tot = b? How is it related to a secant line?

. What limit must be calculated to find the rate of change of a func-
tion g(¢) att = #,?

. What is an informal or intuitive definition of the limit

lim f(x) = L?
X—>Xg

Why is the definition “informal”? Give examples.

Questions to Guide Your Review

4. Does the existence and value of the limit of a function f(x) as x

approaches xj ever depend on what happens at x = x(? Explain
and give examples.

. What function behaviors might occur for which the limit may fail

to exist? Give examples.

. What theorems are available for calculating limits? Give exam-

ples of how the theorems are used.
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7.

10.

11.
12.
13.
14.
15.
16.

17.

18.

Chapter 2: Limits and Continuity

How are one-sided limits related to limits? How can this relation-
ship sometimes be used to calculate a limit or prove it does not
exist? Give examples.

. What is the value of limy—¢ ((sin 6)/6) ? Does it matter whether 6

is measured in degrees or radians? Explain.

. What exactly does lim,—,, f(x) = L mean? Give an example in

which you find a 6 > 0 for a given f; L, xo, and € > 0 in the pre-
cise definition of limit.

Give precise definitions of the following statements.
b. lim,—, f(x) =5

d. lim,—,; f(x) = —©

a. lim—, f(x) =5
c. lim—; f(x) = o0

What exactly do lim,—c f(x) = L and lim,—_ f(x) = L mean?
Give examples.

What are lim,— .00 k (k a constant) and lim,— . (1/x)? How do
you extend these results to other functions? Give examples.

How do you find the limit of a rational function as x — +00?
Give examples.

What are horizontal, vertical, and oblique asymptotes? Give ex-
amples.

What conditions must be satisfied by a function if it is to be con-
tinuous at an interior point of its domain? At an endpoint?

How can looking at the graph of a function help you tell where
the function is continuous?

What does it mean for a function to be right-continuous at a
point? Left-continuous? How are continuity and one-sided conti-
nuity related?

What can be said about the continuity of polynomials? Of rational
functions? Of trigonometric functions? Of rational powers and al-

19.

20.
21.

22.

23.

24.

25.
26.

27.

28.

gebraic combinations of functions? Of composites of functions?
Of absolute values of functions?

Under what circumstances can you extend a function f(x) to be
continuous at a point x = ¢? Give an example.

What does it mean for a function to be continuous on an interval?

What does it mean for a function to be continuous? Give exam-
ples to illustrate the fact that a function that is not continuous on
its entire domain may still be continuous on selected intervals
within the domain.

What are the basic types of discontinuity? Give an example of
each. What is a removable discontinuity? Give an example.

What does it mean for a function to have the Intermediate Value
Property? What conditions guarantee that a function has this
property over an interval? What are the consequences for graph-
ing and solving the equation f(x) = 0?

It is often said that a function is continuous if you can draw its
graph without having to lift your pen from the paper. Why is that?

What does it mean for a line to be tangent to a curve C at a point P?
What is the significance of the formula
S+ h) = f)
lim ————?
h—0 h
Interpret the formula geometrically and physically.

How do you find the tangent to the curve y = f(x) at a point
(x0, ¥0) on the curve?

How does the slope of the curve y = f(x) at x = x, relate to the
function’s rate of change with respect to x at x = x(? To the deriv-
ative of f at x¢?
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Chapter Practice Exercises

Limits and Continuity
1. Graph the function

1, x= -1
—X, -1 <x<0
flx) = 1, x=0
—X, 0<x<l1
1, x = 1.
Then discuss, in detail, limits, one-sided limits, continuity, and

one-sided continuity of f at x = —1, 0, and 1. Are any of the dis-
continuities removable? Explain.

. Repeat the instructions of Exercise 1 for

0, x= -1
) 1x, 0<|x|<1
fx) = 0. x=1
1, x> 1.

. Suppose that f(#) and g(#) are defined for all 7 and that lim,—,,

f(#) = =7 and lim,—,, g(¢#) = 0. Find the limit as t — ¢, of the
following functions.

a. 3f(t) b. (f(1)?
f(0)

c. f(t)-g(t) -

e. cos (g(1) f. /(0]

g ft) +g() h. 1/f(0)
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4. Suppose that f(x) and g(x) are defined for all x and that
2. Find the limits as

lim,—o f(x) = 1/2 and lim,—( g(x) =
x — 0 of the following functions.

a. —g(x) b. g(x)- f(x)

c. fx) + g(x) d. 1/f(x)
f(x) - cosx

e. x + f(x) T -1

In Exercises 5 and 6, find the value that lim,—.o g(x) must have if the

given limit statements hold.

5. lim (Lg(x)) =1 6.

x—0 X

i, i ) =2
7. On what intervals are the following functions continuous?
a. f(x) =x'? b. g(x) = x**
c. hix) =x%? d. k(x) = x71/6

8. On what intervals are the following functions continuous?
a. f(x) = tanx b. g(x) = cscx

sin x
X

COS X
X —

c. h(x) = d. i(x) =

Finding Limits

In Exercises 9—16, find the limit or explain why it does not exist.

X2 —d4x + 4
X3+ 5x% — l4x

a. asx—0

9. lim

b. asx—2
x>+ x
X+ 2t + X3

a. asx—0

10. lim

b. asx— —1

_ 2 _ 2
11. 1im17\/’; 12. lim = —2
—1 1 —x x—a ¥t — g?

 (x+h)?r R o (x+h)?F - R

13. lim ————— 14. llm —————
h—0 h x—0 h
11 .

2+ -8

15. lim 2722 16. tim > =8

x—0 x—0

In Exercises 17-20, find the limit of g(x) as x approaches the indi-

cated value.
1

. 13 _ i YA

17, lim (450" =2 18 e e
3 m 3%

19. lim = 00 20. Ilim =
=1 g(x) x=>=2 \/@

Limits at Infinity
Find the limits in Exercises 21-30.

. 2x+3 22+ 3
21, xll?go 5x + 7 22. xllgloo 5x2 + 7

143
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2 _
23, lim T2 F8 2. lim
x—>—00 3x x—00 x° — Tx + 1
25, lim L 2. lim —5 X

LN =00 1203 + 128

(If you have a grapher, try graphing the function

. osinx
27. 1
00 [ x| for-5=x=35)
P (If you have a grapher, try graphing
28. Blim % f(x) = x(cos (1/x) — 1) near the origin to

“see” the limit at infinity.)

_x +sinx + 2V . x4 x7!
29, lim ————————— 30. lim ————
x—00 x + sinx x—00 x23 4 cos?x

Continuous Extension

31. Can f(x) = x(x> — 1)/|x* — 1] be extended to be continuous at
x =1 or —1? Give reasons for your answers. (Graph the func-
tion—you will find the graph interesting.)

32. Explain why the function f(x) = sin(1/x) has no continuous ex-
tension tox = 0.

In Exercises 33-36, graph the function to see whether it appears to
have a continuous extension to the given point a. If it does, use Trace
and Zoom to find a good candidate for the extended function’s value
at a. If the function does not appear to have a continuous extension,
can it be extended to be continuous from the right or left? If so, what
do you think the extended function’s value should be?

-1 5cos 6
3B.fx) ==, a=1 34 g00) = 220 4=x)2
x — Vx 40 — 2
35. h(H) = (1 + [t)Y, a=0 36. k(x) = 1 sz’ a=0

Roots
A 37. Letf(x) = x> —x — 1.
a. Show that f has a zero between —1 and 2.

b. Solve the equation f(x) = 0 graphically with an error of
magnitude at most 1075,

c. It can be shown that the exact value of the solution in part (b) is

1, Veo\' (1 Ve
2 18 2 18
Evaluate this exact answer and compare it with the value you
found in part (b).
38. Let /() = 6° — 260 + 2.
a. Show that f has a zero between —2 and 0.
b. Solve the equation f(6) = 0 graphically with an error of
magnitude at most 1074,

c. Itcanbe shown that the exact value of the solution in part (b) is

19 1/3 19 1/3
( f‘1> ‘( ﬁ“)

Evaluate this exact answer and compare it with the value you
found in part (b).
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Chapter

E

Assigning a value to 0° The rules of exponents (see Appendix
9) tell us that «° = 1 if ¢ is any number different from zero. They
also tell us that 0" = 0 if n is any positive number.

If we tried to extend these rules to include the case 0°, we
would get conflicting results. The first rule would say 0° = 1,
whereas the second would say 0° = 0.

We are not dealing with a question of right or wrong here.
Neither rule applies as it stands, so there is no contradiction. We
could, in fact, define 0° to have any value we wanted as long as
we could persuade others to agree.

What value would you like 0° to have? Here is an example
that might help you to decide. (See Exercise 2 below for another
example.)

a. Calculate x* for x = 0.1, 0.01, 0.001, and so on as far as your
calculator can go. Record the values you get. What pattern do
you see?

b. Graph the function y = x* for 0 < x = 1. Even though the
function is not defined for x = 0, the graph will approach the
y-axis from the right. Toward what y-value does it seem to be
headed? Zoom in to further support your idea.

. A reason you might want 0° to be something other than 0 or 1

As the number x increases through positive values, the numbers
1/x and 1/(In x) both approach zero. What happens to the number

1/(Inx)
fx) = (l)

as x increases? Here are two ways to find out.

a. Evaluate f for x = 10, 100, 1000, and so on as far as your
calculator can reasonably go. What pattern do you see?

b. Graph f in a variety of graphing windows, including windows

that contain the origin. What do you see? Trace the y-values
along the graph. What do you find?

. Lorentz contraction In relativity theory, the length of an object,

say a rocket, appears to an observer to depend on the speed at
which the object is traveling with respect to the observer. If the
observer measures the rocket’s length as L at rest, then at speed v
the length will appear to be

L =1Ly [l ——=.
c
This equation is the Lorentz contraction formula. Here, c is the
speed of light in a vacuum, about 3 X 10% m/sec. What happens
to L as v increases? Find lim,—.- L. Why was the left-hand limit
needed?

. Controlling the flow from a draining tank Torricelli’s law says

that if you drain a tank like the one in the figure shown, the rate y
at which water runs out is a constant times the square root of the
water’s depth x. The constant depends on the size and shape of the
exit valve.

Additional and Advanced Exercises

Exit rate y ft3/min l

Suppose that y = \/;/ 2 for a certain tank. You are trying to
maintain a fairly constant exit rate by adding water to the tank
with a hose from time to time. How deep must you keep the water
if you want to maintain the exit rate
a. within 0.2 f*/min of the rate yo = 1 ft/min?

b. within 0.1 ft*/min of the rate yo = 1 ft’/min?

. Thermal expansion in precise equipment As you may know,

most metals expand when heated and contract when cooled. The
dimensions of a piece of laboratory equipment are sometimes so
critical that the shop where the equipment is made must be held at
the same temperature as the laboratory where the equipment is to
be used. A typical aluminum bar that is 10 cm wide at 70°F will be

y=10+ (t — 70) X 107*

centimeters wide at a nearby temperature 7. Suppose that you are
using a bar like this in a gravity wave detector, where its width
must stay within 0.0005 cm of the ideal 10 cm. How close to
to = 70°F must you maintain the temperature to ensure that this
tolerance is not exceeded?

. Stripes on a measuring cup The interior of a typical 1-L meas-

uring cup is a right circular cylinder of radius 6 cm (see accompa-
nying figure). The volume of water we put in the cup is therefore a
function of the level / to which the cup is filled, the formula being

V = w6°h = 36mh.

How closely must we measure 4 to measure out 1 L of water
(1000 cm?) with an error of no more than 1% (10 cm?)?

Stripes
about
1 mm
wide

(a)
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r=6cm
|
v Liquid volume
= "V =36mh

N 4

(b)

fe—=—

A 1-L measuring cup (a), modeled as a right circular cylinder (b) of
radius » = 6 cm

Precise Definition of Limit

In Exercises 7-10, use the formal definition of limit to prove that the
function is continuous at X .
7. fx) =x*—17, xp=1 8. g(x) =1/(2x), xo=1/4
9. i(x) = V2x —3, x=210. F(x) = V9 —x, x=5
11. Uniqueness of limits Show that a function cannot have two dif-
ferent limits at the same point. That is, if lim, ., f(x) = L; and
limx*))(() f(x) =Ly, thenL; = L,.
12. Prove the limit Constant Multiple Rule:
lim kf(x) =k lim f(x) for any constant k.
xX—c xX—c
13. One-sided limits If lim,—¢- f(x) = 4 and lim,—¢- f(x) = B,
find
a. limo f(x* — x) b. lim,—g f(x* — x)
d. limg f(x*> — x%)

14. Limits and continuity Which of the following statements are
true, and which are false? If true, say why; if false, give a coun-
terexample (that is, an example confirming the falsehood).

c. limeg f(x2 — x%)

a. Iflim,—, f(x) exists but lim,—, g(x) does not exist, then
lim,—,(f(x) + g(x)) does not exist.

b. If neither lim,—, f(x) nor lim,—, g(x) exists, then
lim,—, (f(x) + g(x)) does not exist.

c. If f is continuous at x, then so is| f|.

d. If|f]|is continuous at a, then so is f.

In Exercises 15 and 16, use the formal definition of limit to prove that
the function has a continuous extension to the given value of x.

1 x2—2x—3

X = — =
5 x= 1 16. g(x) 6

2 _
x +

x=3

15. f(x) =
17. A function continuous at only one point Let
x, if x is rational
flx) = {0, if x is irrational.

a. Show that f is continuous at x = 0.

b. Use the fact that every nonempty open interval of real
numbers contains both rational and irrational numbers to
show that f is not continuous at any nonzero value of x.
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18. The Dirichlet ruler function If x is a rational number, then x
can be written in a unique way as a quotient of integers m/n
where n > (0 and m and » have no common factors greater than 1.
(We say that such a fraction is in lowest terms. For example, 6/4
written in lowest terms is 3/2.) Let f(x) be defined for all x in the
interval [0, 1] by

1) { 1/n, ifx = m/n is a rational number in lowest terms
x) = o
0, if x is irrational.

For instance, f(0) = f(1) =1, f(1/2) =1/2, f(1/3)=
f(2/3) = 1/3, f(1/4) = f(3/4) = 1/4, and so on.
a. Show that f is discontinuous at every rational number in [0, 1].

b. Show that f is continuous at every irrational number in [0, 1].
(Hint: If € is a given positive number, show that there are only
finitely many rational numbers 7 in [0, 1] such that f(r) = €.)

c¢. Sketch the graph of f. Why do you think f is called the “ruler
function™?

19. Antipodal points Is there any reason to believe that there is al-
ways a pair of antipodal (diametrically opposite) points on Earth’s
equator where the temperatures are the same? Explain.

20. If lim (f(x) + g(x)) = 3 and lim (f(x) — g(x)) = —1, find
xX—>c xX—>c
lim f(x)g(x).
21. Roots of a quadratic equation that is almost linear The equa-
tion ax? + 2x — 1 = 0, where « is a constant, has two roots if
a > —landa # 0, one positive and one negative:

-1+ VI +a
a b

1+ a

ri(a) = ra) =~

a. What happens to ry(a) asa —0? Asa— —1"?
b. What happens to 7_(a) asa—0? Asa — —17?

¢. Support your conclusions by graphing r+(a) and r—(a) as
functions of a. Describe what you see.

d. For added support, graph f(x) = ax®> + 2x — 1
simultaneously fora = 1, 0.5, 0.2, 0.1, and 0.05.

22. Root of an equation Show that the equation x + 2cosx = 0
has at least one solution.

23. Bounded functions A real-valued function f is bounded from
above on a set D if there exists a number N such that f(x) = N
for all x in D. We call NV, when it exists, an upper bound for f on
D and say that f is bounded from above by M. In a similar manner,
we say that f is bounded from below on D if there exists a
number M such that f(x) = M for all x in D. We call M, when it
exists, a lower bound for f on D and say that f is bounded from
below by M. We say that f is bounded on D if it is bounded from
both above and below.

a. Show that f is bounded on D if and only if there exists a num-
ber B such that | f(x)| = B forallx in D.

b. Suppose that f is bounded from above by N. Show that if
lim,—, f(x) = L,then L = N.

c¢. Suppose that f is bounded from below by M. Show that if
lim,—,, f(x) = L,then L = M.
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24. Max {a, b} and min {a, b}
a. Show that the expression

a+ b la — bl
2 T3

max {a, b} =

equals @ if a = b and equals b if b = a. In other words,
max {a, b} gives the larger of the two numbers a and b.

b. Find a similar expression for min {a, b}, the smaller of @ and b.

Generalized Limits Involving sn(; 0

The formula limg—g (sin@)/6 = 1 can be generalized. If lim,—.
f(x) = 0 and f(x) is never zero in an open interval containing the
point x = ¢, except possibly c itself, then

sin f(x)
im———— =
x—e  f(x)
Here are several examples.
L2
. sin
a. lim 2x =1.
x—0 x

x+1Dx—-2) _

————F——— =1+ lim -3.
r——1 x +1 x——1 x + 1 3

VR Ve
i (= D(1 + Vi) _xgnl(x—n(wx/;)

Find the limits in Exercises 25-30.

1
5

sin (1 — cos i
25. lim S~ €053 26. lim 0%
=0 0" sin\V/x
_ sin(sinx) ~ sin(x? + x)
27. lim 28 lim
. sin(x? — 4) ) sm(\/); - 3)
29. lim ——x— 30. lim —————
x—2 X — 2 x—9 X — 9
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Chapter Technology Application Projects
Mathematica-Maple Module

Take It to the Limit

Part 1

Part II (Zero Raised to the Power Zero: What Does it Mean?)

Part III (One-Sided Limits)

Visualize and interpret the limit concept through graphical and numerical explorations.
Part IV (What a Difference a Power Makes)

See how sensitive limits can be with various powers of x.

Mathematica-Maple Module

Going to Infinity

Part I (Exploring Function Behavior as x — 00 or x — —00)

This module provides four examples to explore the behavior of a function as x — 00 or x — —00.
Part II (Rates of Growth)

Observe graphs that appear to be continuous, yet the function is not continuous. Several issues of continuity are explored to obtain results that you
may find surprising.
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3.1

DIFFERENTIATION

OVERVIEW In Chapter 2, we defined the slope of a curve at a point as the limit of secant
slopes. This limit, called a derivative, measures the rate at which a function changes, and it
is one of the most important ideas in calculus. Derivatives are used to calculate velocity
and acceleration, to estimate the rate of spread of a disease, to set levels of production so
as to maximize efficiency, to find the best dimensions of a cylindrical can, to find the age
of a prehistoric artifact, and for many other applications. In this chapter, we develop tech-
niques to calculate derivatives easily and learn how to use derivatives to approximate com-
plicated functions.

The Derivative as a Function

HisTorICAL ESSAY

The Derivative

At the end of Chapter 2, we defined the slope of a curve y = f(x) at the point where
X = xoto be

. flxo + 1) — f(x)
lim .
h—0 h
We called this limit, when it existed, the derivative of f at xo. We now investigate the

derivative as a function derived from f by considering the limit at each point of the do-
main of f.

DEFINITION Derivative Function

The derivative of the function f(x) with respect to the variable x is the function
f' whose value at x is

f&x +h) — f(x)

Je) = Jim S

provided the limit exists.

147
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y =

Secant slope is

f@) - f&)

Z—X

P(x, f(x)) f(@) = f(x)

Derivative of fat x is

TN LG e O (60
N

J@) —f®

= lim ——%

FIGURE 3.1 The way we write the
difference quotient for the derivative of a
function f depends on how we label the
points involved.

We use the notation f(x) rather than simply f in the definition to emphasize the inde-
pendent variable x, which we are differentiating with respect to. The domain of f' is the set
of points in the domain of f for which the limit exists, and the domain may be the same or
smaller than the domain of f. If f’ exists at a particular x, we say that f is differentiable
(has a derivative) at x. If f’ exists at every point in the domain of f, we call f differen-
tiable.

If we write z = x + h,then 2 = z — x and & approaches 0 if and only if z approaches
x. Therefore, an equivalent definition of the derivative is as follows (see Figure 3.1).

Alternative Formula for the Derivative

. f(@) = f(x)
m-———= .

1) = lim S

Calculating Derivatives from the Definition

The process of calculating a derivative is called differentiation. To emphasize the idea
that differentiation is an operation performed on a function y = f(x), we use the notation

d
puAC))

as another way to denote the derivative f'(x). Examples 2 and 3 of Section 2.7 illustrate
the differentiation process for the functions y = mx + b and y = 1/x. Example 2 shows
that

d

“=(mx + b) = m.

I (mx +b)=m
For instance,

In Example 3, we see that

Here are two more examples.

EXAMPLE 1 Applying the Definition
Differentiate f(x) = p f I
Solution  Here we have f(x) = p 2

-1
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and
(x + h)
+h)=——"—
fe+ h) (x-l—h)—l’SO
S+ h) = f(x)
'(x) = lim ——————
f'(x) Jim )
x+h  x
_ x+h—-1 x-—1
- h
:liml'(x+h)(x_1)_X(x+h_l) a_c¢_ad—cb
h—0h x+h—=—1Dx-1) b d bd
~ lim + - —h
—oh (x+h—1)(x—1)
= lim 1 Sp— .
—o(x +h—1Dx—1) (x—1)?*
EXAMPLE 2  Derivative of the Square Root Function
I_ia (a) Find the derivative of y = Vx forx > 0.
Video (b) Find the tangent line to the curve y = Vxatx = 4.
| You will often need to know the Solution
derivative of Vx for x > 0: (a) We use the equivalent form to calculate f':
a1 , @) = f(x)
&V T o) = lim = =%
_ i Vz — Vx
- me=s
L Vz — Vx
= lim
= (Vz = Va)(Vz + Vi)
~ fim ———— = 1
y =x Vz+ Vx o 2V
y= zltx +1 (b) The slope of the curve at x = 4 is
\
1 1
\ f'4)y=—~==-—.
42  y=Va Va4
—H
The tangent is the line through the point (4, 2) with slope 1/4 (Figure 3.2):
| | | | | x
0 4
y=2+ %(x —4)
FIGURE 3.2 The curve y = Vo and its 1
tangent at (4, 2). The tangent’s slope is V=g + 1. [ |
found by evaluating the derivative at x = 4
(Example 2). We consider the derivative of y = Vx when x = 0 in Example 6.
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Notations

There are many ways to denote the derivative of a function y = f(x), where the independ-
ent variable is x and the dependent variable is y. Some common alternative notations for
the derivative are

d d
re =y =2 =L d g < ) = Do),

X
The symbols d/dx and D indicate the operation of differentiation and are called
differentiation operators. We read dy/dx as “the derivative of y with respect to x,” and
df/dx and (d/dx)f(x) as “the derivative of f with respect to x.” The “prime” notations y’
and f' come from notations that Newton used for derivatives. The d/dx notations are simi-
lar to those used by Leibniz. The symbol dy/dx should not be regarded as a ratio (until we
introduce the idea of “differentials™ in Section 3.8).

Be careful not to confuse the notation D(f) as meaning the domain of the function f
instead of the derivative function f'. The distinction should be clear from the context.

To indicate the value of a derivative at a specified number x = a, we use the notation

oy _ @l _df 4
f ((1) - dx —a - dx —a - dx f(X) —a
For instance, in Example 2b we could write
d 1 1 1
! 4 = — \/7 = = = —.
/') dx xx=4 2V =4 2\/41 4

To evaluate an expression, we sometimes use the right bracket ] in place of the vertical bar | .

Graphing the Derivative

We can often make a reasonable plot of the derivative of y = f(x) by estimating the slopes
on the graph of f. That is, we plot the points (x, f'(x)) in the xy-plane and connect them
with a smooth curve, which represents y = f'(x).

EXAMPLE 3  Graphing a Derivative

Graph the derivative of the function y = f(x) in Figure 3.3a.

Solution ~ We sketch the tangents to the graph of f at frequent intervals and use their

slopes to estimate the values of f'(x) at these points. We plot the corresponding (x, f'(x))
pairs and connect them with a smooth curve as sketched in Figure 3.3b. ]

What can we learn from the graph of y = f'(x)? At a glance we can see

1. where the rate of change of f is positive, negative, or zero;
2. the rough size of the growth rate at any x and its size in relation to the size of f(x);
3. where the rate of change itself is increasing or decreasing.

Here’s another example.

EXAMPLE 4  Concentration of Blood Sugar

On April 23, 1988, the human-powered airplane Daedalus flew a record-breaking 119 km
from Crete to the island of Santorini in the Aegean Sea, southeast of mainland Greece. Dur-

Copyright © 2005 Pearson Education, Inc., publishing as Pearson Addison-Wesley


http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html
bounce03.html?1_2_l
bounce03.html?8_7

3.1 The Derivative as a Function 151

y
Slope 0 _
S— y =/
A
\ Slope -1
10 3
B \ Slope - 4 Slope ~ i 2 y-units/x-unit
3 E
C .
~ § y-units
5 D
>..¢_
Slope 0
——
~ 4 x-units .
0 3 10 15
(@)
Slope
4 -
3l y=r (Jy
2+ E
1 -
A D_'/
= X
3 10 15
-1+ o8
B
-2 Vertical |coordinate +1
(b)

FIGURE 3.3 We made the graph of y = f’(x) in (b) by plotting slopes from the
graph of y = f(x) in (a). The vertical coordinate of B’ is the slope at B and so on. The
graph of f' is a visual record of how the slope of f changes with x.

ing the 6-hour endurance tests before the flight, researchers monitored the prospective pilots’
blood-sugar concentrations. The concentration graph for one of the athlete-pilots is shown in
Figure 3.4a, where the concentration in milligrams/deciliter is plotted against time in hours.

The graph consists of line segments connecting data points. The constant slope of
each segment gives an estimate of the derivative of the concentration between measure-
ments. We calculated the slope of each segment from the coordinate grid and plotted the
derivative as a step function in Figure 3.4b. To make the plot for the first hour, for in-
stance, we observed that the concentration increased from about 79 mg/dL to 93 mg/dL.
The net increase was Ay = 93 — 79 = 14 mg/dL. Dividing this by Az = 1 hour gave
the rate of change as

% = % = 14 mg/dL per hour.

Notice that we can make no estimate of the concentration’s rate of change at times
t=1,2,...,5, where the graph we have drawn for the concentration has a corner and no
slope. The derivative step function is not defined at these times. [
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y
§ 110
) /\
& 100 N
g / N
= L—
E 90F /
=1
3 /
§ 80
%
| | | | | |
0 1 2 3 4 5 6
Time (h)
(@)
y
=
==
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g 5r
S —_—
S 1 1 1 1 1
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Slope =
i S+ h) — f(b)
m *ﬁ
Slope = =0
i fla+ h) — f(a)
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h—0" h

h>0 h <0

FIGURE 3.5 Derivatives at endpoints are
one-sided limits.

Athens
°
%
GREECE % TURKEY
<
SANTORINI
. RHODES
1
Sea of 'lCrete
1
I
Mediterranean Heraklion 0 50 100 150
Sea CRETE 1t m

Daedalus's flight path on April 23, 1988

<«FIGURE 3.4 (a) Graph of the sugar concentration in the blood of a Daedalus pilot
during a 6-hour preflight endurance test. (b) The derivative of the pilot’s blood-sugar
concentration shows how rapidly the concentration rose and fell during various portions
of the test.

Differentiable on an Interval; One-Sided Derivatives

A function y = f(x) is differentiable on an open interval (finite or infinite) if it has a de-
rivative at each point of the interval. It is differentiable on a closed interval [a, b] if it is
differentiable on the interior (a, b) and if the limits

fla + h) — f(a)

hlin8+ 4 Right-hand derivative at a
b+ h)— f(b
hlin& w Left-hand derivative at b

exist at the endpoints (Figure 3.5).

Right-hand and left-hand derivatives may be defined at any point of a function’s do-
main. The usual relation between one-sided and two-sided limits holds for these derivatives.
Because of Theorem 6, Section 2.4, a function has a derivative at a point if and only if it
has left-hand and right-hand derivatives there, and these one-sided derivatives are equal.

EXAMPLE 5 y = |x|Is Not Differentiable at the Origin

Show that the function y = |x|is differentiable on (— 00, 0) and (0, o©) but has no deriva-
tiveatx = 0.

Solution  To the right of the origin,

%(lx“ = %(x) = %(1 -x) = 1. %(/n.\' +b) =m,|x|=x

To the left,

=L =L rm=—1 -
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y'not defined at x = 0:

right-hand derivative
# left-hand derivative

FIGURE 3.6 The function y = |x|is
not differentiable at the origin where
the graph has a “corner.”
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(Figure 3.6). There can be no derivative at the origin because the one-sided derivatives dif-
fer there:

P L et ] R ]
h—0* h h—0" h

Right-hand derivative of | x| at zero

. h
= hlll’l&z |h| = hwhenh > 0.
—

Iim1l=1
h—0"

P L] el ] O ]
h—0" h h—0 h

Left-hand derivative of |x|at zero

= hli)r%T |h| = —h when h < 0.

= lim —1=—1. [ |
h—0"
EXAMPLE 6 y = Vx Is Not Differentiable at x = 0

In Example 2 we found that for x > 0,

d 1
dx\/;c_zx/)}'

We apply the definition to examine if the derivative exists at x = 0:

Vo+r-Vo oo
h

= lim —= = o0.

h—0" \Vh
Since the (right-hand) limit is not finite, there is no derivative at x = 0. Since the slopes
of the secant lines joining the origin to the points (h, \/ﬁ) on a graph of y = Vx ap-
proach 00, the graph has a vertical tangent at the origin. [

lim
h—0"

When Does a Function Not Have a Derivative at a Point?

A function has a derivative at a point x if the slopes of the secant lines through
P(xp, f(x0)) and a nearby point Q on the graph approach a limit as Q approaches P. When-
ever the secants fail to take up a limiting position or become vertical as Q approaches P,
the derivative does not exist. Thus differentiability is a “smoothness” condition on the
graph of f. A function whose graph is otherwise smooth will fail to have a derivative at a
point for several reasons, such as at points where the graph has

1. acorner, where the one-sided 2. a cusp, where the slope of PO
derivatives differ. approaches 00 from one side and —o0
from the other.
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3. avertical tangent, where the slope of PQ approaches oo from both sides or
approaches — o0 from both sides (here, —o0).

4. adiscontinuity.

Differentiable Functions Are Continuous

A function is continuous at every point where it has a derivative.

THEOREM 1 Differentiability Implies Continuity
If f has a derivative at x = ¢, then f is continuous at x = c.

Proof Given that f'(c) exists, we must show that lim,—. f(x) = f(c), or equivalently,
that lim;,—¢ f(c + k) = f(c). If h # 0, then

fle +h) = f(e) + (flc + h) = f(c))

— fo) + fle + h}z A,
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FIGURE 3.7 The unit step
function does not have the
Intermediate Value Property and
cannot be the derivative of a
function on the real line.
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Now take limits as # — 0. By Theorem 1 of Section 2.2,

fin e+ ) = fim 0+t HEE L

fle) + f'(c)-0
= f(e) + 0
= f(c). [
Similar arguments with one-sided limits show that if f has a derivative from one side
(right or left) at x = ¢ then f is continuous from that side at x = c.
Theorem 1 on page 154 says that if a function has a discontinuity at a point (for in-
stance, a jump discontinuity), then it cannot be differentiable there. The greatest integer

function y = | x| = intx fails to be differentiable at every integer x = n (Example 4,
Section 2.6).

CAUTION The converse of Theorem 1 is false. A function need not have a derivative at a
point where it is continuous, as we saw in Example 5.

The Intermediate Value Property of Derivatives

Not every function can be some function’s derivative, as we see from the following theorem.

THEOREM 2

If a and b are any two points in an interval on which f is differentiable, then f’
takes on every value between f'(a) and f'(b).

Theorem 2 (which we will not prove) says that a function cannot be a derivative on an in-
terval unless it has the Intermediate Value Property there. For example, the unit step func-
tion in Figure 3.7 cannot be the derivative of any real-valued function on the real line. In
Chapter 5 we will see that every continuous function is a derivative of some function.

In Section 4.4, we invoke Theorem 2 to analyze what happens at a point on the graph
of a twice-differentiable function where it changes its “bending” behavior.
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3.1 The Derivative as a Function

155

Finding Derivative Functions and Values

Using the definition, calculate the derivatives of the functions in Exer-
cises 1-6. Then find the values of the derivatives as specified.

L f(x) =4 —x%  f'(=3), £(0), f'(1)
2. F(x) = (x — 1) + 1; F'(=1),F(0),F(2)

3. 9() = t%; g (1), g(2),¢(V3)

4 k@) =1 F R-0KO)LK(V2)

5. p(6) = V30; p'(1),p'(3),p'(2/3)
6. r(s) = V2s + 1; #(0),7(1),7(1/2)

In Exercises 7-12, find the indicated derivatives.

dy . .3 dr . s
7.5 if y=2x s'ds if r—2+1
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% T ST
10.% if v=t—%

4
11.d—’;7 if p=ﬁ
12.3—; if z=ﬁ

Slopes and Tangent Lines

In Exercises 13—16, differentiate the functions and find the slope of
the tangent line at the given value of the independent variable.

13.f(x)=x+%, x=-3
1

2+ x’
15. s =13 -1, t=—1
16. y=(x+ 173, x=-2

14. k(x) =

Il
)

X

In Exercises 17-18, differentiate the functions. Then find an equation
of the tangent line at the indicated point on the graph of the function.

Graphs

Match the functions graphed in Exercises 27-30 with the derivatives
graphed in the accompanying figures (a)—(d).

' '

y _ y
0 ——> X
0 X
(a) (b)
y' y'

17. y = f(x) = (x,y) = (6,4)

8
\/x—2’
8. w=giz) =1+ V4—-2z (zw) =(3,2)

In Exercises 19-22, find the values of the derivatives.

ds . _ 1 _ 2
19. dr|,_ if s=1 3t
dy . 1
20. a 3 lf y = 1 X
dr . 2
21. — if r=—7"—
61— Va4 -0
2. if w=z+Vz
dz z=4

Using the Alternative Formula for Derivatives

Use the formula

fz) = f(x)

f0) = lim =

to find the derivative of the functions in Exercises 23-26.

(c) (d)
27. y 28. y
y=hH(K y =/
0 x 0 *
29. y 30. y
/\ Y =f3()7 \ y =f4(xy
I\ ’ x

2. f(x) = - - 5
2. f(x) = ﬁ
25. g(x) = ﬁ

26. g(x) =1+ Vx

31. a. The graph in the accompanying figure is made of line seg-
ments joined end to end. At which points of the interval
[—4, 6] is f' not defined? Give reasons for your answer.

0,2) (6,2)

(1,-2) (4,-2)
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Exercise
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3.1 The Derivative as a Function

b. Graph the derivative of f.
The graph should show a step function.

32. Recovering a function from its derivative

a. Use the following information to graph the function f over
the closed interval [—2, 5].

i) The graph of f is made of closed line segments joined
end to end.
ii) The graph starts at the point (=2, 3).
iii) The derivative of f is the step function in the figure
shown here.

b. Repeat part (a) assuming that the graph starts at (=2, 0)
instead of (—2, 3).

33. Growth in the economy The graph in the accompanying figure
shows the average annual percentage change y = f(¢) in the U.S.
gross national product (GNP) for the years 1983-1988. Graph
dy/dt (where defined). (Source: Statistical Abstracts of the United
States, 110th Edition, U.S. Department of Commerce, p. 427.)

7%

VRN
/ L\

6
5
4
3
2
1
0

1983 1984 1985 1986 1987 1988

34. Fruit flies (Continuation of Example 3, Section 2.1.) Popula-
tions starting out in closed environments grow slowly at first,
when there are relatively few members, then more rapidly as the
number of reproducing individuals increases and resources are
still abundant, then slowly again as the population reaches the
carrying capacity of the environment.

a. Use the graphical technique of Example 3 to graph the
derivative of the fruit fly population introduced in Section 2.1.
The graph of the population is reproduced here.

350

300

250 / /
200

150

100
50

0 10 20 30 40 50
Time (days)

b. During what days does the population seem to be increasing
fastest? Slowest?

One-Sided Derivatives

Compare the right-hand and left-hand derivatives to show that the
functions in Exercises 35-38 are not differentiable at the point P.

35. y 36. y
y=fx)
y = x> y=/ y=2x
y=2 5
P(1,2)
y=x
1=
N | | X
P(0,0) 0 1 2
37. y 38. y
y =/ Yy =fx)
= _ P(1,1
y=2x—1 s (1, 1D B
Y= x
1+ P, 1) '1 X
y=Vx y=x
. X
0 1

Differentiability and Continuity on an Interval

Each figure in Exercises 39-44 shows the graph of a function over a
closed interval D. At what domain points does the function appear to be

a. differentiable?
b. continuous but not differentiable?

¢. neither continuous nor differentiable?

Copyright © 2005 Pearson Education, Inc., publishing as Pearson Addison-Wesley


http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html
tcu0301g.html
tcu0301g.html
tcu0301g.html

Exercise

158 Chapter 3: Differentiation

Give reasons for your answers.

39. 40.
y=f Y A
D: -3=x=2 y=f)
oL ) D: -2=x=3
1+ 1+
I I ) I Ly L | /\u X
-3 -2 -1 0 1 2 -2 -1 o 1/2 3
1 \ -1
ok 2ok
41. 42.
y
y =/
D: -2=x=3
30~
| °
I I [ S
-2 -1 0 1 2 3

43. 44.

y Yy y=f
y=f D: 3=x=3
D:-1=x=2 4r-

\_ ok
| | | [T L1\ x
10 1 o F —1-2 -10] 1 2 ?

Theory and Examples
In Exercises 4548,
a. Find the derivative f'(x) of the given function y = f(x).

b. Graph y = f(x) and y = f'(x) side by side using separate sets of

coordinate axes, and answer the following questions.
c. For what values of x, if any, is f' positive? Zero? Negative?

d. Over what intervals of x-values, if any, does the function

y = f(x) increase as x increases? Decrease as x increases? How
is this related to what you found in part (c¢)? (We will say more

about this relationship in Chapter 4.)
45. y = —x? 46. y = —1/x
47. y =x/3 48. y = x*/4
49. Does the curve y = x
Give reasons for your answer.

3

50. Does the curve y = 2V/x have any horizontal tangents? If so,

where? Give reasons for your answer.

ever have a negative slope? If so, where?

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

Tangent to a parabola Does the parabola y = 2x? — 13x + 5
have a tangent whose slope is —17? If so, find an equation for the
line and the point of tangency. If not, why not?

Tangent to y = Vx Does any tangent to the curve y = Vx

cross the x-axis at x = —1? If so, find an equation for the line

and the point of tangency. If not, why not?

Greatest integer in x Does any function differentiable on

(—00, 00) have y = intx, the greatest integer in x (see Figure

2.55), as its derivative? Give reasons for your answer.

Derivative of y =|x| Graph the derivative of f(x) = |x|. Then

graph y = (|x| — 0)/(x — 0) = |x|/x. What can you conclude?

Derivative of —f Does knowing that a function f(x) is differen-

tiable at x = x tell you anything about the differentiability of the

function — f at x = x(? Give reasons for your answer.

Derivative of multiples Does knowing that a function g(7) is

differentiable at = 7 tell you anything about the differentiability

of the function 3g at r = 7? Give reasons for your answer.

Limit of a quotient Suppose that functions g(¢) and A(?) are

defined for all values of ¢ and g(0) = 4(0) = 0. Can

lim,—¢ (g(¢))/(h(2)) exist? If it does exist, must it equal zero?

Give reasons for your answers.

a. Let f(x) be a function satisfying | f(x)| =< x*for—1 = x = 1.
Show that f is differentiable at x = 0 and find f'(0).

b. Show that

.1
xzsmf, x#0

0=\ sy

is differentiable at x = 0 and find f'(0).

Graph y = 1/(2\/)}) in a window that has 0 = x = 2. Then, on
the same screen, graph

Vx +h — Vax
Yy = -
forh = 1,0.5,0.1. Then try 2~ = —1, —0.5, —0.1. Explain what

is going on.
Graph y = 3x? in a window that has -2 = x = 2,0 = y = 3.
Then, on the same screen, graph
_x+ h)? — x*

o h
for h = 2,1,0.2. Then try 4 = —2, —1, —0.2. Explain what is
going on.
Weierstrass’s nowhere differentiable continuous function
The sum of the first eight terms of the Weierstrass function
fx) =220 (2/3)" cos (9"mx) is

g(x) = cos (mx) + (2/3)! cos (9mx) + (2/3)? cos (9*mx)
+ (2/3)%cos (9*mx) + -+ + (2/3)" cos (97mx).

Graph this sum. Zoom in several times. How wiggly and bumpy
is this graph? Specify a viewing window in which the displayed
portion of the graph is smooth.
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COMPUTER EXPLORATIONS

Use a CAS to perform the following steps for the functions in Exer-
cises 62—67.

a. Plot y = f(x) to see that function’s global behavior.

b. Define the difference quotient g at a general point x, with general
step size h.

c. Take the limit as # — 0. What formula does this give?

d. Substitute the value x = x; and plot the function y = f(x)
together with its tangent line at that point.

e. Substitute various values for x larger and smaller than x; into the
formula obtained in part (c). Do the numbers make sense with
your picture?

62.
63.

64.

66.

3.1 The Derivative as a Function 159

. Graph the formula obtained in part (c). What does it mean when

its values are negative? Zero? Positive? Does this make sense
with your plot from part (a)? Give reasons for your answer.

fx)=x>+x*—x, xo=1
fx) =x"P + X2, xo=1
4x x— 1
X) = s o,
/) ¥+ 1 3x2+ 1
f(x) =sin2x, xo=a/2 67. f(x) =x>cosx, xo= /4

X0 =2 65 f(x)= xo = —1
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3.2 Differentiation Rules 159

3 . 2 Differentiation Rules

This section introduces a few rules that allow us to differentiate a great variety of func-
tions. By proving these rules here, we can differentiate functions without having to apply
the definition of the derivative each time.

Powers, Multiples, Sums, and Differences

The first rule of differentiation is that the derivative of every constant function is zero.

RULE 1 Derivative of a Constant Function
If f has the constant value f(x) = ¢, then

daf d
i ( ) = 0.
EXAMPLE 1
y If f has the constant value f(x) = 8, then
[/ d
, h,
c (xlc) (x-b—I c) v dx ( )_0'
| |
| | Similarly,
| |
Lon d(_m\ _ d _
5 )'C . J'r ; x e > 0 and P V3 0. [

FIGURE 3.8  The rule (d/dx)(c) = 0is Proof of Rule 1 We apply the definition of derivative to f(x) = ¢, the function whose

another way to say that the values of outputs have the constant value ¢ (Figure 3.8). At every value of x, we find that

constant functions never change and that

the slope of a horizontal line is zero at F'(x) = lim fGx +h) = f(x) = lim =S = {imo = 0. -
every point. h—0 h =0 h h—0
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HisTorRICAL BIOGRAPHY

The second rule tells how to differentiate x” if n is a positive integer.

RULE 2 Power Rule for Positive Integers
If n is a positive integer, then

To apply the Power Rule, we subtract 1 from the original exponent (z) and multiply
the result by 7.

EXAMPLE 2  Interpreting Rule 2

f X x2 x3 x?

f 1| 2x | 3x% | 4° ]

First Proof of Rule 2 The formula

Richard Courant
(1888-1972)

= x"= = x)" x4 X+

can be verified by multiplying out the right-hand side. Then from the alternative form for
the definition of the derivative,

f@) = f@)

f’(x) = limﬁ lim z — x

zZ—>X zZ—>X

lm(Gz""' + 2% + -+ zx" 2 4+ X"
Z/>X

= px""!

Second Proof of Rule 2 If f(x) = x", then f(x + &) = (x + &)". Since n is a positive
integer, we can expand (x + /)" by the Binomial Theorem to get

f'(x) = lim M _ limw

h—0 h h—0 h
nn —1
{x” + nx""'h + 7( 3 )x”*zh2 +o k" + h"} —x"
= 1.
hg}) h
-1
nx" " h + n(n > )x”72h2 - 7 L L
= lim
h—0 h
-1
= lim {n)c”1 + 7’1(” )x”*zh 4o axh" A+ h”l}
h—0 2
= nx"! u

The third rule says that when a differentiable function is multiplied by a constant, its
derivative is multiplied by the same constant.
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y=3x

Slope = 3(2x)

FIGURE 3.9 The graphs of y = x? and

y = 3x%. Tripling the y-coordinates triples

the slope (Example 3).

| Denoting Functions by u and v

The functions we are working with
when we need a differentiation formula
are likely to be denoted by letters like f
and g. When we apply the formula, we
do not want to find it using these same
letters in some other way. To guard
against this problem, we denote the
functions in differentiation rules by
letters like u and v that are not likely to
be already in use.

3.2 Differentiation Rules 161

RULE 3 Constant Multiple Rule

If u is a differentiable function of x, and ¢ is a constant, then
d _ du
i (cu) = ¢ I

In particular, if # is a positive integer, then

d
dx

(ex™) = enx" L.

EXAMPLE 3

(a) The derivative formula
d N oane
7dx(3x ) =32x = 6x

says that if we rescale the graph of y = x? by multiplying each y-coordinate by 3,
then we multiply the slope at each point by 3 (Figure 3.9).

(b) A useful special case
The derivative of the negative of a differentiable function u is the negative of the func-

tion’s derivative. Rule 3 with ¢ = —1 gives
d = i —1 = — -i = —@
dx( u) = dx( Leu) ! dx () dx’ "
Proof of Rule 3
d - cu(x + h) — cu(x) Derivative definition
dx cu = hE,I}) h with f(x) = cu(x)
ooulx + h) — ulx)
=clim——F—— Limit property
h—0 h
=c @ u is differentiable. |
dx

The next rule says that the derivative of the sum of two differentiable functions is the
sum of their derivatives.

RULE 4 Derivative Sum Rule

If u and v are differentiable functions of x, then their sum u + v is differentiable
at every point where u and v are both differentiable. At such points,

@+dv

d _
E(u+v)_dx dx’
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EXAMPLE 4  Derivative of a Sum
y=x*+ 12x

dy_

ay _d o4, d
dx  dx () + dx(12x)

=4x° + 12 "

Proof of Rule 4 We apply the definition of derivative to f(x) = u(x) + v(x):

o [ux + h) + vx + h)] - [ulx) + v(x)]
lim

L) + v(o)]

h—0 h
ulx + h) —ulx)  vix+ h) — v(x)
= lim +
h—0 h h
B u(x+h)—u(x)+1, v(x+h)—v(x)_@+@
B hir%) h hl—rﬂ) h T dx o dx’ "

Combining the Sum Rule with the Constant Multiple Rule gives the Difference Rule,
which says that the derivative of a difference of differentiable functions is the difference of
their derivatives.

d, . _d _ _du ,  \dv _du dv
dx(u v)_dx[u+( D] dx+( 1)dx dx  dx

The Sum Rule also extends to sums of more than two functions, as long as there are
only finitely many functions in the sum. If u;, uy, ..., u, are differentiable at x, then so is
[Z5] + [7%) + -+ un,and

d _dm | dup du,
dx(u1+u2+ + u,) = + S v

dx dx

EXAMPLE 5  Derivative of a Polynomial

. _ 3.4 0
Video y =X +3x 5x + 1

d
& ix3 + d (4x2> — %(5)6) + d%c(l)

dx  dx dx \3
=3x2+%-2x—5+0
=3x2+§x—5 ]

Notice that we can differentiate any polynomial term by term, the way we differenti-
ated the polynomial in Example 5. All polynomials are differentiable everywhere.

Proof of the Sum Rule for Sums of More Than Two Functions We prove the statement

d _ dw | duy du,
dx(”1+”2+"'+”")_dx+dx+ o

by mathematical induction (see Appendix 1). The statement is true for n = 2, as was just
proved. This is Step 1 of the induction proof.
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3.2 Differentiation Rules 163

Step 2 is to show that if the statement is true for any positive integer n = k, where
k = ny = 2, then itis also true forn = k + 1. So suppose that

d _ dm | duy dug
dx(u1+u2+---+uk)—dx+dx+ +dx. (1)

Then

i(Ul Ty ko e+ )
dx

——
Call the function Call this
defined by this sum u. function v.
duk 1
= a%(ul +u + o oy + d): Rule4(‘0ri’\.(u + v)
du1 duz duk duk+1
=—+— ¥+ - + — + Eq. (1
dx dx dx dx a-()

With these steps verified, the mathematical induction principle now guarantees the
Sum Rule for every integer n = 2. ]

EXAMPLE 6  Finding Horizontal Tangents

Yy oy=xt—2x242 Does the curve y = x* — 2x? + 2 have any horizontal tangents? If so, where?

Solution  The horizontal tangents, if any, occur where the slope dy/dx is zero. We have,

dy d 4 2 3
0,2 — i _ )
©0,2) . ™ (x 2x= + 2) = 4x 4x

d
1= Now solve the equation @& 0 for x:
-1, 1) (1, 1) dx

L . . 43 —4x =0
o ! 4x(x* = 1) =0
FIGURE 3.10 The curve x=01,-1.
y = x* — 2x% + 2 and its horizontal The curve y = x* — 2x% + 2 has horizontal tangents at x = 0, 1, and —1. The corre-
tangents (Example 6). sponding points on the curve are (0, 2), (1, 1) and (—1, 1). See Figure 3.10. |

Products and Quotients

While the derivative of the sum of two functions is the sum of their derivatives, the deriva-
tive of the product of two functions is not the product of their derivatives. For instance,

Ay = d oy - Aoy, dN_ 1. =
e (x+x) e (x*) = 2x, while e (x) I x)=1-1=1.

The derivative of a product of two functions is the sum of rwo products, as we now explain.

RULE 5 Derivative Product Rule
If u and v are differentiable at x, then so is their product v, and

A, dv .
dx(uv) =u +vdx.
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| Picturing the Product Rule
If u(x) and v(x) are positive and

increase when x increases, and if 27 > 0,

v(x + h)
Av u(x) Av Au Az::
B e i e -
V() L
I |
u(x)v(x) 1:;(x) AL%
I I
I I
| |
0 Au \
u(x) u(x + h)
then the total shaded area in the picture
is
ulx + hv(x + h) — u(x)v(x)
=ulx + h) Av + v(x + h)
Au — AulAv.
Dividing both sides of this equation by

h gives

ulx + hv(x + h) — u(x)v(x)

h

=u(x + h)% + v(x + h)%

- Au%.
Ash— 0"
Av dv
Au 7 0 o 0,
leaving
d, o dv, du
dx(uv) =u + v

The derivative of the product uv is u times the derivative of v plus v times the deriva-

tive of u. In prime notation, (uv)’ = uv’ + vu'. In function notation,

EXAMPLE 7

L fg()] = f)g'(x) + gf ).

Using the Product Rule

Find the derivative of

Solution

d |1
dx | X

(x2 +

1
X

Y =%

1 1 > 1
=2 — 5 )+ (x2+
J=5er-5)+

1 1
=2-—=—1--=

x3 .X'3

2
=1-=.

x3

Proof of Rule 5

To change this fraction into an equivalent one that contains difference quotients for the de-

(xz +

x

1

X

)

)

We apply the Product Rule with u = 1/xand v = x? + (1/x):

Ll(z/v) = z/@ + v@,
dx dx dx

1

2

X

o

d

dx

1 1
@)Z*EW

Example 3, Section 2.7.

ulx + hv(x + h) — u(x)v(x)

d .
dx (uwv) = ;}ino

h

rivatives of # and v, we subtract and add u(x + 4)v(x) in the numerator:

di)’c (uv)

As happroaches zero, u(x + h) approaches u(x) because u, being differentiable at x, is con-
tinuous at x. The two fractions approach the values of dv/dx at x and du/dx at x. In short,

m ulx + Hv(x + h) — ulx + Hv(x) + ulx + hHv(x) — ulx)v(x)

and

h—0
li + h
iy ulx ) h

limu(x + A4) - lim
h—0 h—0

h

d

v(x + h) — v(x) N

h

v(x)

vix + h) — v(x)

d _ . dv
dx(uv)—u + v

dx

+

du

dx

u(x + h)
h

v(x)* lim

h—0

— u(x)

ulx + h) — u(x)
-

In the following example, we have only numerical values with which to work.

EXAMPLE 8  Derivative from Numerical Values

Let y = uv be the product of the functions « and v. Find y'(2) if
u(2) = 3, u'(2) = —4, v(2) =1, and

Solution  From the Product Rule, in the form

y = () = w' + v,

v'(2) = 2.
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we have

u(2)v'(2) + v(2)u'(2)
3)2) +(1)(—4) =6 —4=2. [ |

Y'(2)

EXAMPLE 9  Differentiating a Product in Two Ways
Find the derivative of y = (x? + 1)(x* + 3).

Solution

(a) From the Product Rule with u = x> + I andv = x> + 3, we find
d (> 3 (2 2 3
)+ 3)] = 07 DG+ P+ 3)20)

= 3x* + 322 + 2% + 6x
= 5x* + 3x2 + 6x.

(b) This particular product can be differentiated as well (perhaps better) by multiplying
out the original expression for y and differentiating the resulting polynomial:

y=2+ D +3)=x"+ x> +3x?+3

d
2 5x* + 3x% + 6x.
dx
This is in agreement with our first calculation. [

Just as the derivative of the product of two differentiable functions is not the product of
their derivatives, the derivative of the quotient of two functions is not the quotient of their
derivatives. What happens instead is the Quotient Rule.

RULE 6 Derivative Quotient Rule

If u and v are differentiable at x and if v(x) # 0, then the quotient u/v is differ-
entiable at x, and

du dv

d(u)_Vd
dx \V 2 :

In function notation,

d {f(X)} _ 8W)f'(x) — f(¥)g'(x)
dx | g(x) 2%(x) ’

EXAMPLE 10  Using the Quotient Rule

Find the derivative of

Video
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166 Chapter 3: Differentiation

Solution
We apply the Quotient Rule withu = t> — landv = 1> + 1:

@ _ (Iz + 1)'2[ - (fz - 1) <2t d (“> B v(du/dt) — u(dv/dt)
dr (12 + 1) dr\v) "~
_ 20 42020 + 2
(12 + 1)
_ 4¢
(2 + 1)

2
v?

Proof of Rule 6
ulx + h)  ulx)

d(u)_ . vix + b)) v(x)
dx \v) = ;5% h

i v(X)ulx + 7)) — ulx)v(x + h)
B hl—I?o hu(x + h)v(x)

To change the last fraction into an equivalent one that contains the difference quotients for
the derivatives of u and v, we subtract and add v(x)u(x) in the numerator. We then get

d (u) o v(ulx + ) — v(x)u(x) + v(x)u(x) — u(x)v(x + h)
dc \v) hl—% hv(x + h)v(x)
u(x + h) — ulx) vix + h) — v(x)
N S S S
a /}1—1110 v(x + h)v(x)
Taking the limit in the numerator and denominator now gives the Quotient Rule. [

Negative Integer Powers of x

The Power Rule for negative integers is the same as the rule for positive integers.

RULE 7 Power Rule for Negative Integers
If n is a negative integer and x # 0, then

i ny — n—1
e (x") = mx""".
EXAMPLE 11
(a) % ()1C> = %(x_l) = (—l)x_2 = —é Agrees with Example 3, Section 2.7
d (AN _,d 3y gay4o 12
) 7 (x3) 49 () = 4(=3) w0 .
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Proof of Rule 7 The proof uses the Quotient Rule. If n is a negative integer, then
n = —m, where m is a positive integer. Hence, x” = x™" = 1/x", and

dny-d(L
dx(x)_dx(x”’>

m, d d ( m
X .ﬁ(l)_l'dx(x )

= ( m)z Quotient Rule withu = 1 and v = x"
X
0 — mx"! d
= T om Since m > 0, — (x™) = mx™"!
x2m dx
= —mx !
= I’lxn_l . Since —m = n ]

EXAMPLE 12  Tangent to a Curve

Find an equation for the tangent to the curve Video

TN

y=x+

at the point (1, 3) (Figure 3.11).
FIGURE 3.11 The tangent to the curve

y=x+ (2/x)at(l,3) in Example 12. Solution  The slope of the curve is

The curve has a third-quadrant portion

not shown here. We see how to graph @ - i(x) + 2i (1> =1+ 2(_ 1) =1 - l
functions like this one in Chapter 4. dx  dx dx \* x? x?

The slope atx = 11is

L
dx

Il
—
|
()
I
—_

d
= 1 —_ =
x=1 |: x2 x=1

The line through (1, 3) with slope m = —1 is

y - 3= (—1)(x - 1) Point-slope equation
y=-—x+1+3
y=—-x + 4. u

The choice of which rules to use in solving a differentiation problem can make a dif-
ference in how much work you have to do. Here is an example.

EXAMPLE 13  Choosing Which Rule to Use
Rather than using the Quotient Rule to find the derivative of

(x — D(x* — 2x)
4 b

x
expand the numerator and divide by x*:
x — D(x? — 2x 3352
y = ( )(4 ) — X 3)64 + 2x — x_l _ 3x_2 + 2x_3.
X X
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| How to Read the Symbols for
Derivatives

n

dzy

—  “dsquared y dx squared”

dx?

m

(n)

y “y prime77
y “y double prime”

“y triple prime”

y “y super n”

d"y
dx"

D" “Dtothe n”

Video

Video

“d to the n of y by dx to the n”

Video

Then use the Sum and Power Rules:

y _ -3 -4
il 3(=2)x + 2(=3)x
1 6 6
=—— =2 n
X2 X Xt

Second- and Higher-Order Derivatives

If y = f(x) is a differentiable function, then its derivative f'(x) is also a function. If f’ is
also differentiable, then we can differentiate f’ to get a new function of x denoted by f”.
So f” = (f")". The function f"” is called the second derivative of f because it is the deriv-
ative of the first derivative. Notationally,

d* d dy’
I =t =g (;) = S =y = DN = DP f).

The symbol D? means the operation of differentiation is performed twice.
If y = x®, then y’ = 6x° and we have

” dy / d 5 4
—5—7(6)6)—3096.
Thus Dz(xﬁ) = 30x*.
If y" is differentiable, its derivative, y” = dy"/dx = d’y/dx> is the third derivative
of y with respect to x. The names continue as you imagine, with

d (- d"y
y =y = =5 = Dy

denoting the nth derivative of y with respect to x for any positive integer 7.

We can interpret the second derivative as the rate of change of the slope of the tangent
to the graph of y = f(x) at each point. You will see in the next chapter that the second de-
rivative reveals whether the graph bends upward or downward from the tangent line as we
move off the point of tangency. In the next section, we interpret both the second and third
derivatives in terms of motion along a straight line.

EXAMPLE 14  Finding Higher Derivatives

The first four derivatives of y = x> — 3x2 + 2 are
First derivative: Yy =3x* — 6x
Second derivative: y” = 6x — 6

Third derivative:  y” = 6
Fourth derivative: y(4) =0.

The function has derivatives of all orders, the fifth and later derivatives all being zero.
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EXERCISES 3.2

3.2 Differentiation Rules
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Derivative Calculations

In Exercises 1-12, find the first and second derivatives.

Ly=-—x*+3 2.y=x+x+38
3.5 =55 -3¢ 4. w=3z" — 723 + 2127
4x3 x3 2

5.y=T—x

7.w=3272—%
9. y = 6x2— 10x — 5x72 10. y=4—2x —x°

11.r=L—i 12.r=2—i+i

+3\/(q" - 1 43
37. p = (q ><q 3 > 38. p= q3 3
129 q (g—17+(g+1)

Using Numerical Values

352 25 0 ¢ 6

In Exercises 13-16, find ' (a) by applying the Product Rule and
(b) by multiplying the factors to produce a sum of simpler terms to
differentiate.

13.y=C-x)*—x+1) 4 y=x—-Dx>+x+1)

15.y=(x2+1)<x+5+%>16.y=<x+%><x—%+l>

39. Suppose « and v are functions of x that are differentiable at x = 0
and that

w(0) =15, u'(0)=-3 v(0)=-1, v(0) =2.

Find the values of the following derivatives at x = 0.
d d (u d (v d
a - (uv) b. e (v) e (u) d. e (7v — 2u)
40. Suppose u and v are differentiable functions of x and that
w(l) =2, u'(1)=0, v(l)=35 v'(l)=—1.

Find the values of the following derivatives at x = 1.

d d (u d (v d
a. a(uv) b. a <§) C. a <E> d. 5(71) - 2u)

Find the derivatives of the functions in Exercises 17-28.

Slopes and Tangents

_ 2x+5 _ 2x + 1
17.y—3x_2 18.z—xz_1
_x*—4 P
19. g(x)—x+ 5 20. f(1) = PR
21, v=(1 — (1 + 7! 22. w=(2x — 7)) '(x + 5)
Vs — 1 5x + 1
23, = 24, u =
/) Vs + 1 YTk
25,y = LHX - 4Vx 26.r=2(i+\/§)
Vo
+ Dx + 2
2.y — 1 e+ Dx +2)

-2 +x+1) VT D -2

Find the derivatives of all orders of the functions in Exercises 29 and
30.

5

X
30.)/:@

Find the first and second derivatives of the functions in Exercises
31-38.

3 2 _
3.y =5 t7 32.s=%
0 — 1)(0>+ 60+ 1 T -x+ 1
3.r =t )(93 LN S LS AR
X
35.w=<%)(3—z) 36 w=(+1DE- DE+ 1)

41. a. Normal to a curve Find an equation for the line perpendicular
to the tangent to the curve y = x> — 4x + 1 at the point (2, 1).

b. Smallest slope What is the smallest slope on the curve? At
what point on the curve does the curve have this slope?

c. Tangents having specified slope Find equations for the
tangents to the curve at the points where the slope of the
curve is 8.

42. a. Horizontal tangents Find equations for the horizontal tan-
gents to the curve y = x> — 3x — 2. Also find equations for
the lines that are perpendicular to these tangents at the points

of tangency.

b. Smallest slope What is the smallest slope on the curve? At
what point on the curve does the curve have this slope? Find
an equation for the line that is perpendicular to the curve’s
tangent at this point.

43. Find the tangents to Newton s serpentine (graphed here) at the ori-

gin and the point (1, 2).

1,2

(=)
—_
N -
(3]
Ny .
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44.

45.

46.

47.

Find the tangent to the Witch of Agnesi (graphed here) at the point
2, 1.

Quadratic tangent to identity function The curve y =
ax? + bx + c passes through the point (1, 2) and is tangent to the
line y = x at the origin. Find a, b, and c.

Quadratics having a common tangent The curves y =
x?+ ax + b and y = cx — x> have a common tangent line at
the point (1, 0). Find a, b, and c.

a. Find an equation for the line that is tangent to the curve
y = x> — xat the point (—1, 0).

b. Graph the curve and tangent line together. The tangent
intersects the curve at another point. Use Zoom and Trace to
estimate the point’s coordinates.

c. Confirm your estimates of the coordinates of the second
intersection point by solving the equations for the curve and
tangent simultaneously (Solver key).

. a. Find an equation for the line that is tangent to the curve

y = x* — 6x? + 5x at the origin.

b. Graph the curve and tangent together. The tangent intersects
the curve at another point. Use Zoom and Trace to estimate
the point’s coordinates.

c¢. Confirm your estimates of the coordinates of the second
intersection point by solving the equations for the curve and
tangent simultaneously (Solver key).

Theory and Examples

49.

50.

The general polynomial of degree n has the form

P(X) = an-xn + an—lxn71 + o+ azxz + ax + ap

where a, # 0. Find P'(x).

The body’s reaction to medicine The reaction of the body to a
dose of medicine can sometimes be represented by an equation of

the form
_ap2(C_M
R M(2 3),

where C is a positive constant and M is the amount of medicine
absorbed in the blood. If the reaction is a change in blood pres-
sure, R is measured in millimeters of mercury. If the reaction is a
change in temperature, R is measured in degrees, and so on.

Find dR/dM . This derivative, as a function of M, is called the
sensitivity of the body to the medicine. In Section 4.5, we will see

51.

52.

53.

54.

55.

how to find the amount of medicine to which the body is most
sensitive.

Suppose that the function v in the Product Rule has a constant
value ¢. What does the Product Rule then say? What does this say
about the Constant Multiple Rule?

The Reciprocal Rule

a. The Reciprocal Rule says that at any point where the function
v(x) is differentiable and different from zero,

d(1)y__1ldv

dx \V v2dx’
Show that the Reciprocal Rule is a special case of the
Quotient Rule.

b. Show that the Reciprocal Rule and the Product Rule together
imply the Quotient Rule.

Generalizing the Product Rule The Product Rule gives the
formula

d . . _ dv .  du

dx(uv) Yy * Y dx
for the derivative of the product uv of two differentiable functions
of x.

a. What is the analogous formula for the derivative of the
product uvw of three differentiable functions of x?

b. What is the formula for the derivative of the product u uyu3uy
of four differentiable functions of x?

c. What is the formula for the derivative of a product
ujirus . . . u, of a finite number n of differentiable functions
of x?

Rational Powers

a. Find % (x3/2) by writing x¥? as x+x'? and using the Product

Rule. Express your answer as a rational number times a
rational power of x. Work parts (b) and (c) by a similar
method.

cood o sp
b. Find e (x7).

. d o an
¢. Find i (x"7%).

d. What patterns do you see in your answers to parts (a), (b), and
(c)? Rational powers are one of the topics in Section 3.6.

Cylinder pressure If gas in a cylinder is maintained at a con-
stant temperature 7, the pressure P is related to the volume V by a
formula of the form

nRT an’®

V—nb_ﬁ’

P =

in which a, b, n, and R are constants. Find dP/dV . (See accompa-
nying figure.)
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A 56. The best quantity to order One of the formulas for inventory
management says that the average weekly cost of ordering, paying

< > for, and holding merchandise is
U

h
A(q)=k7m+cm+l,

g where ¢ is the quantity you order when things run low (shoes, ra-
v dios, brooms, or whatever the item might be); & is the cost of plac-
LTS ing an order (the same, no matter how often you order); ¢ is the
cost of one item (a constant); m is the number of items sold each

\_/ week (a constant); and / is the weekly holding cost per item (a

constant that takes into account things such as space, utilities, in-
surance, and security). Find d4/dq and d*4/dq?.
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The Derivative as a Rate of Change

3.3

In Section 2.1, we initiated the study of average and instantaneous rates of change. In this
section, we continue our investigations of applications in which derivatives are used to
model the rates at which things change in the world around us. We revisit the study of mo-
tion along a line and examine other applications.

It is natural to think of change as change with respect to time, but other variables can
be treated in the same way. For example, a physician may want to know how change in
dosage affects the body’s response to a drug. An economist may want to study how the cost
of producing steel varies with the number of tons produced.

Instantaneous Rates of Change

If we interpret the difference quotient (f(x + &) — f(x))/h as the average rate of change
in f over the interval from x to x + 4, we can interpret its limit as 2 — 0 as the rate at
which f is changing at the point x.

DEFINITION Instantaneous Rate of Change
The instantaneous rate of change of f with respect to x at x is the derivative

flxo + h) — f(xo)

f'(x) = hlqu 7 ,

provided the limit exists.

Thus, instantaneous rates are limits of average rates.

It is conventional to use the word instantaneous even when x does not represent time.
The word is, however, frequently omitted. When we say rate of change, we mean
instantaneous rate of change.
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Position at time ¢ ... and at time 7 + At

}‘ As }

>

5 = £

FIGURE 3.12 The positions of a body
moving along a coordinate line at time #
and shortly later at time 7 + Ar.

< K
s+ As = f(t + Ap)

EXAMPLE 1 How a Circle’s Area Changes with Its Diameter

The area 4 of a circle is related to its diameter by the equation
= z 2
A 4 D~.
How fast does the area change with respect to the diameter when the diameter is 10 m?

Solution  The rate of change of the area with respect to the diameter is

dd _ m 5 _ 7D
i~ 4Py
When D = 10 m, the area is changing at rate (77/2)10 = 57 m*/m. ]

Motion Along a Line: Displacement, Velocity, Speed,
Acceleration, and Jerk

Suppose that an object is moving along a coordinate line (say an s-axis) so that we know
its position s on that line as a function of time #:

s = f(0).
The displacement of the object over the time interval from 7 to ¢ + Az (Figure 3.12) is
As = f(t + Ar) — f(2),
and the average velocity of the object over that time interval is

displacement Ay f(z + Af) — f(1)
Vg = = X, = .

travel time ~ Af At

To find the body’s velocity at the exact instant ¢, we take the limit of the average ve-
locity over the interval from #to ¢ + At as At shrinks to zero. This limit is the derivative of
f with respect to z.

DEFINITION Velocity

Velocity (instantaneous velocity) is the derivative of position with respect to

time. If a body’s position at time 7is s = f(¢), then the body’s velocity at time ¢ is
d

ds . fte+ A — f(2)
v(t) =4 = Jim At :

EXAMPLE 2  Finding the Velocity of a Race Car

Figure 3.13 shows the time-to-distance graph of a 1996 Riley & Scott Mk I11-Olds WSC
race car. The slope of the secant PQ is the average velocity for the 3-sec interval from
t = 2tot = 5 sec; in this case, it is about 100 ft/sec or 68 mph.

The slope of the tangent at P is the speedometer reading at t = 2 sec, about 57 ft/sec
or 39 mph. The acceleration for the period shown is a nearly constant 28.5 ft/sec® during
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800
700 | OMEIRO
600
g 300 Secant slope 1s
3 average velocity
§ 400 for interval from 0
A 300 t=2tot= Tangent slope
\ is speedometer
200 / reading at t =
| (1nstantane0us
I .
100 B i velocity).
0 t

1 2 3 4 5 6 17 8
Elapsed time (sec)

FIGURE 3.13 The time-to-distance graph for
Example 2. The slope of the tangent line at P is the
instantaneous velocity at # = 2 sec.

each second, which is about 0.89g, where g is the acceleration due to gravity. The race
car’s top speed is an estimated 190 mph. (Source: Road and Track, March 1997.) [

Besides telling how fast an object is moving, its velocity tells the direction of motion.
When the object is moving forward (s increasing), the velocity is positive; when the body
is moving backward (s decreasing), the velocity is negative (Figure 3.14).

0 0
s increasing: s decreasing:
positive slope so negative slope so
moving forward moving backward

FIGURE 3.14 For motion s = f(¢) along a straight line, v = ds/dt is
positive when s increases and negative when s decreases.

If we drive to a friend’s house and back at 30 mph, say, the speedometer will show 30
on the way over but it will not show —30 on the way back, even though our distance from
home is decreasing. The speedometer always shows speed, which is the absolute value of
velocity. Speed measures the rate of progress regardless of direction.
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DEFINITION Speed
Speed is the absolute value of velocity.

ds

Speed = |v(r)| = 7

EXAMPLE 3  Horizontal Motion

Figure 3.15 shows the velocity v = f'(¢) of a particle moving on a coordinate line. The
particle moves forward for the first 3 sec, moves backward for the next 2 sec, stands still
for a second, and moves forward again. The particle achieves its greatest speed at time

t = 4, while moving backward. ]
v
I I I
MOVES FORWARD : : FORWARD |
w=0 | | (o> 0) :
| | | v =S | |
I I I
| | |
_ Speeds_):<_Steady_):<_ jlows_)I :(_ Speeds_):
up |(v = const); oW : : up :
| | | | |
| | | |
I | | |
! I | 1
! | | I
: | | I
| ! L . ) L5 1 (sec
0 1 2 3 4 5 6 77 1 (see)
I
. l
! Greatest |
! |
| speed |
I
. \ l
I I
I I
| Spocts. ] Slows_
|
l(_ Speeds | Slows_)I
: up | down :
|
I I
| MOVES B/I\CKWARD |
: (w<0) :
FIGURE 3.15 The velocity graph for Example 3.
HISTORICAL BIOGRAPHY The rate at which a body’s velocity changes is the body’s acceleration. The accelera-

tion measures how quickly the body picks up or loses speed.

A sudden change in acceleration is called a jerk. When a ride in a car or a bus is jerky,
it is not that the accelerations involved are necessarily large but that the changes in accel-
eration are abrupt.

Bernard Bolzano
(1781-1848)
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DEFINITIONS Acceleration, Jerk

Acceleration is the derivative of velocity with respect to time. If a body’s posi-
tion at time ¢ is s = f(¢), then the body’s acceleration at time ¢ is

_dv _d’s
a(t) = it = g2
Jerk is the derivative of acceleration with respect to time:
() = da _ d’s
](t) - dt - d[?’.

Near the surface of the Earth all bodies fall with the same constant acceleration.
Galileo’s experiments with free fall (Example 1, Section 2.1) lead to the equation

s = %gtz,

where s is distance and g is the acceleration due to Earth’s gravity. This equation holds in a
vacuum, where there is no air resistance, and closely models the fall of dense, heavy ob-
jects, such as rocks or steel tools, for the first few seconds of their fall, before air resist-
ance starts to slow them down.

The value of g in the equation s = (1/2)gt*> depends on the units used to measure
t and s. With ¢ in seconds (the usual unit), the value of g determined by measurement at
sea level is approximately 32 ft/sec® (feet per second squared) in English units, and
g = 9.8 m/sec’ (meters per second squared) in metric units. (These gravitational con-
stants depend on the distance from Earth’s center of mass, and are slightly lower on top of
Mt. Everest, for example.)

The jerk of the constant acceleration of gravity (g = 32 ft/sec?) is zero:

. d _
J = dt (g) =0.
t (seconds) s (meters)

=0 @ 0 An object does not exhibit jerkiness during free fall.
=1 s EXAMPLE 4  Modeling Free Fall

10

s Figure 3.16 shows the free fall of a heavy ball bearing released from rest at time # = 0 sec.
=2 v Lo (a) How many meters does the ball fall in the first 2 sec?

L 25 E‘ (b) What is its velocity, speed, and acceleration then?
30

Video Solution

35
40 (a) The metric free-fall equation is s = 4.9¢>. During the first 2 sec, the ball falls
i=3 0 Las s(2) = 49(2)* = 19.6 m.

(b) At any time ¢, velocity is the derivative of position:

FIGURE 3.16 A ball bearing

o _ i 2\
falling from rest (Example 4). ) = s5'(0) = dt (4.96%) = 9.81.
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5 Att = 2, the velocity is
v(2) = 19.6 m/sec

Smax- & v=0

in the downward (increasing s) direction. The speed at t = 2 is

4 Speed = |v(2)] = 19.6 m/sec.
g 26 BV =7 The acceleration at any time ¢ is
e i alt) = v'(t) = 5"(1) = 9.8 m/sec’,
=

Att = 2, the acceleration is 9.8 m/sec?. ]

EXAMPLE 5 Modeling Vertical Motion

1 A dynamite blast blows a heavy rock straight up with a launch velocity of 160 ft/sec .
s=0R= (about 109 mph) (Figure 3.17a). It reaches a height of s = 160t — 161 ft after ¢ sec. Video
(@) (a) How high does the rock go?

(b) What are the velocity and speed of the rock when it is 256 ft above the ground on the

S way up? On the way down?
400 - s = 160t — 1612 (c) What is the acceleration of the rock at any time ¢ during its flight (after the blast)?
(d) When does the rock hit the ground again?
160 = Solution
| . (a) In the coordinate system we have chosen, s measures height from the ground up, so
0 5 10 the velocity is positive on the way up and negative on the way down. The instant the
s rock is at its highest point is the one instant during the flight when the velocity is 0. To
-160 - V=g T 1603 find the maximum height, all we need to do is to find when v = 0 and evaluate s at
) this time.

) At any time ¢, the velocity is
FIGURE 3.17 (a) The rock in Example 5.

(b) The graphs of s and v as functions of v = ds _ %(160t ~16%) = 160 — 32t fi/sec.

time; s is largest when v = ds/dt = 0. The Codt
graph of s is not the path of the rock: It is a
plot of height versus time. The slope of the
plot is the rock’s velocity, graphed here as 160 — 32t =0 or t = 5sec.
a straight line.

The velocity is zero when

The rock’s height at = 5 sec is
Smax = $(5) = 160(5) — 16(5)> = 800 — 400 = 400 ft.

See Figure 3.17b.

(b) To find the rock’s velocity at 256 ft on the way up and again on the way down, we first
find the two values of ¢ for which

s(t) = 160t — 16> = 256.
To solve this equation, we write
16¢% — 160t + 256 = 0
16(t> — 10t + 16) = 0
(t—=2)(t—8) =0
t = 2sec,t = 8sec.
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y (dollars)

Slope =
marginal cost

(tons/week)

FIGURE 3.18 Weekly steel production:
¢(x) is the cost of producing x tons per
week. The cost of producing an additional
htonsisc(x + h) — c(x).

y
y=cx)
dc
Ac dx
D Ax=1 B
| |
| |
| |
| |
| |
| |
| |
| |
l l
| | X
0 X x+1

FIGURE 3.19 The marginal cost dc/dx
is approximately the extra cost Ac of
producing Ax = 1 more unit.
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The rock is 256 ft above the ground 2 sec after the explosion and again 8 sec after the
explosion. The rock’s velocities at these times are

v(2) = 160 — 32(2) = 160 — 64 = 96 ft/sec.
u(8) = 160 — 32(8) = 160 — 256 = —96 ft/sec.

At both instants, the rock’s speed is 96 ft/sec. Since v(2) > 0, the rock is moving up-
ward (s is increasing) at + = 2 sec; it is moving downward (s is decreasing) at t = 8
because v(8) < 0.

(c) At any time during its flight following the explosion, the rock’s acceleration is a
constant

_dv

dv _ d _ - 2
a=_ = dt(160 32t) = =32 ft/sec”.

The acceleration is always downward. As the rock rises, it slows down; as it falls, it
speeds up.

(d) The rock hits the ground at the positive time ¢ for which s = 0. The equation
160t — 161> = 0 factors to give 16¢(10 — 7) = 0, so it has solutions # = 0 and
t = 10. At ¢ = 0, the blast occurred and the rock was thrown upward. It returned to
the ground 10 sec later. ]

Derivatives in Economics

Engineers use the terms velocity and acceleration to refer to the derivatives of functions
describing motion. Economists, too, have a specialized vocabulary for rates of change and
derivatives. They call them marginals.

In a manufacturing operation, the cost of production c(x) is a function of x, the num-
ber of units produced. The marginal cost of production is the rate of change of cost with
respect to level of production, so it is dc/dx.

Suppose that c(x) represents the dollars needed to produce x tons of steel in one week.
It costs more to produce x + £ units per week, and the cost difference, divided by #, is the
average cost of producing each additional ton:

c(x + h) — c(x)  average cost of each of the additional
h " h tons of steel produced.

The limit of this ratio as 42 — 0 is the marginal cost of producing more steel per week
when the current weekly production is x tons (Figure 3.18).
de . clx+h) —clx) . .
I ;}E,I}) P = marginal cost of production.
Sometimes the marginal cost of production is loosely defined to be the extra cost of
producing one unit:

Ac _clx+ 1) — c(x)
Ax 1 ’

which is approximated by the value of dc/dx at x. This approximation is acceptable if the

slope of the graph of ¢ does not change quickly near x. Then the difference quotient will be

close to its limit dc/dx, which is the rise in the tangent line if Ax = 1 (Figure 3.19). The

approximation works best for large values of x.
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Economists often represent a total cost function by a cubic polynomial
c(x) = ax® + Bx> + yx + 8

where 6 represents fixed costs such as rent, heat, equipment capitalization, and manage-
ment costs. The other terms represent variable costs such as the costs of raw materials,
taxes, and labor. Fixed costs are independent of the number of units produced, whereas
variable costs depend on the quantity produced. A cubic polynomial is usually compli-
cated enough to capture the cost behavior on a relevant quantity interval.

EXAMPLE 6  Marginal Cost and Marginal Revenue

Suppose that it costs
c(x) = x> — 6x2 + 15x

dollars to produce x radiators when 8 to 30 radiators are produced and that
r(x) = x3 — 3x2 + 12x

gives the dollar revenue from selling x radiators. Your shop currently produces 10 radiators
a day. About how much extra will it cost to produce one more radiator a day, and what is
your estimated increase in revenue for selling 11 radiators a day?

Solution  The cost of producing one more radiator a day when 10 are produced is about
c'(10):

c'(x) = dii(f — 6x% + 15x) =3x2 — 12x + 15

¢'(10) = 3(100) — 12(10) + 15 = 195.

The additional cost will be about $195. The marginal revenue is
oy — 4 (3 a2 — 2.2 _
r'(x) = I (x 3x° + 12x> = 3x 6x + 12.

The marginal revenue function estimates the increase in revenue that will result from sell-
ing one additional unit. If you currently sell 10 radiators a day, you can expect your rev-
enue to increase by about

(10) = 3(100) — 6(10) + 12 = $252

if you increase sales to 11 radiators a day. ]

EXAMPLE 7  Marginal Tax Rate

To get some feel for the language of marginal rates, consider marginal tax rates. If your
marginal income tax rate is 28% and your income increases by $1000, you can expect to
pay an extra $280 in taxes. This does not mean that you pay 28% of your entire income in
taxes. It just means that at your current income level /, the rate of increase of taxes 7" with
respect to income is d7/dl = 0.28. You will pay $0.28 out of every extra dollar you earn
in taxes. Of course, if you earn a lot more, you may land in a higher tax bracket and your
marginal rate will increase. ]
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Sensitivity to Change

When a small change in x produces a large change in the value of a function f(x), we say
that the function is relatively sensitive to changes in x. The derivative f'(x) is a measure of
this sensitivity.

EXAMPLE 8  Genetic Data and Sensitivity to Change

The Austrian monk Gregor Johann Mendel (1822—1884), working with garden peas and
other plants, provided the first scientific explanation of hybridization.

His careful records showed that if p (a number between 0 and 1) is the frequency of the
gene for smooth skin in peas (dominant) and (1 — p) is the frequency of the gene for wrin-
kled skin in peas, then the proportion of smooth-skinned peas in the next generation will be

y=2p(1 —p) +p* =2 —p_

The graph of y versus p in Figure 3.20a suggests that the value of y is more sensitive to a
change in p when p is small than when p is large. Indeed, this fact is borne out by the de-
rivative graph in Figure 3.20b, which shows that dy/dp is close to 2 when p is near 0 and
close to 0 when p is near 1.

dy/dp
2
y
1 %:2—@
y=2p—p?
0 | P 0 1 r

() (b)

FIGURE 3.20 (a) The graph of y = 2p — p2,
describing the proportion of smooth-skinned peas.
(b) The graph of dy/dp (Example 8).

The implication for genetics is that introducing a few more dominant genes into a
highly recessive population (where the frequency of wrinkled skin peas is small) will have
a more dramatic effect on later generations than will a similar increase in a highly domi-
nant population. [
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EXERCISES 3.3

Motion A[ong a Coordinate Line b. Find the body’s speed and acceleration at the endpoints of the
Exercises 1-6 give the positions s = f(¢) of a body moving on a coor- interval.
dinate line, with s in meters and 7 in seconds. c. When, if ever, during the interval does the body change direction?
2 —=3t+2 0=t=2

6t —1%, 0=t=<6

a. Find the body’s displacement and average velocity for the given Ls
time interval. 2. s
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0=r=3

)
Il

-3+ 3¢ = 31,

4.5=0YH -1+ 0=t=3

5. szzt—f—%, l=¢t=<5
6. s=%, —4=1r=0
7. Particle motion At time ¢, the position of a body moving along
the s-axis is s = > — 6> + 9rm.
a. Find the body’s acceleration each time the velocity is zero.
b. Find the body’s speed each time the acceleration is zero.
c¢. Find the total distance traveled by the body from ¢ = 0 to
t=2.
8. Particle motion At time # = 0, the velocity of a body moving

along the s-axis is v = 12 — 4t + 3.
a. Find the body’s acceleration each time the velocity is zero.
b. When is the body moving forward? Backward?

¢. When is the body’s velocity increasing? Decreasing?

Free-Fall Applications

9.

10.

11.

12.

13.

Free fall on Mars and Jupiter The equations for free fall at the
surfaces of Mars and Jupiter (s in meters, ¢ in seconds) are
s = 1.861> on Mars and s = 11.44¢% on Jupiter. How long does it
take a rock falling from rest to reach a velocity of 27.8 m/sec
(about 100 km/h) on each planet?

Lunar projectile motion A rock thrown vertically upward
from the surface of the moon at a velocity of 24 m/sec (about 86
km/h) reaches a height of s = 24¢ — 0.8¢> meters in ¢ sec.

a. Find the rock’s velocity and acceleration at time . (The accel-
eration in this case is the acceleration of gravity on the moon.)

b. How long does it take the rock to reach its highest point?
c. How high does the rock go?

d. How long does it take the rock to reach half its maximum
height?

e. How long is the rock aloft?

Finding g on a small airless planet Explorers on a small air-
less planet used a spring gun to launch a ball bearing vertically
upward from the surface at a launch velocity of 15 m/sec. Be-
cause the acceleration of gravity at the planet’s surface was
gsm/ sec?, the explorers expected the ball bearing to reach a
height of s = 15¢ — (1/2)g,¢? meters ¢ sec later. The ball bearing
reached its maximum height 20 sec after being launched. What
was the value of g,?

Speeding bullet A 45-caliber bullet fired straight up from the
surface of the moon would reach a height of s = 832¢ — 2.612
feet after ¢ sec. On Earth, in the absence of air, its height would be
s = 832t — 1617 ft after ¢ sec. How long will the bullet be aloft in
each case? How high will the bullet go?

Free fall from the Tower of Pisa Had Galileo dropped a can-
nonball from the Tower of Pisa, 179 ft above the ground, the ball’s

14.

height above ground ¢ sec into the fall would have been

s =179 — 1617

a. What would have been the ball’s velocity, speed, and
acceleration at time ¢?

b. About how long would it have taken the ball to hit the
ground?

¢. What would have been the ball’s velocity at the moment of
impact?

Galileo’s free-fall formula Galileo developed a formula for a
body’s velocity during free fall by rolling balls from rest down in-
creasingly steep inclined planks and looking for a limiting for-
mula that would predict a ball’s behavior when the plank was ver-
tical and the ball fell freely; see part (a) of the accompanying
figure. He found that, for any given angle of the plank, the ball’s
velocity ¢ sec into motion was a constant multiple of 7. That is, the
velocity was given by a formula of the form v = kz. The value of
the constant k£ depended on the inclination of the plank.

In modern notation—part (b) of the figure—with distance in
meters and time in seconds, what Galileo determined by experi-
ment was that, for any given angle 0, the ball’s velocity ¢ sec into
the roll was

v = 9.8(sin 6)t m/sec.

Free-fall
position

(a) (b)

a. What is the equation for the ball’s velocity during free fall?

b. Building on your work in part (a), what constant acceleration
does a freely falling body experience near the surface of Earth?

Conclusions About Motion from Graphs

15.

The accompanying figure shows the velocity v = ds/dt = f(1)
(m/sec) of a body moving along a coordinate line.

v(m/sec)

v = f(1)

A
R

When does the body reverse direction?

t (sec)

When (approximately) is the body moving at a constant speed?
Graph the body’s speed for 0 = ¢ = 10.

Graph the acceleration, where defined.

B o T
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16. A particle P moves on the number line shown in part (a) of the ac-
companying figure. Part (b) shows the position of P as a function

of time 7.
P
—(‘)—4— —e— —=>——> 5 (cm)
(@)
s (cm)
oL s = f(1)
1 1
0 1 2
ok
4+

(d)

a. When is P moving to the left? Moving to the right? Standing
still?

b. Graph the particle’s velocity and speed (where defined).

17. Launching a rocket When a model rocket is launched, the pro-
pellant burns for a few seconds, accelerating the rocket upward.
After burnout, the rocket coasts upward for a while and then be-
gins to fall. A small explosive charge pops out a parachute shortly
after the rocket starts down. The parachute slows the rocket to
keep it from breaking when it lands.

The figure here shows velocity data from the flight of the
model rocket. Use the data to answer the following.

a. How fast was the rocket climbing when the engine stopped?

b. For how many seconds did the engine burn?

200

150

100

50—/

Velocity (ft/sec)

-50

100, 2 4 6 8§ 10 12

Time after launch (sec)

c. When did the rocket reach its highest point? What was its
velocity then?

d. When did the parachute pop out? How fast was the rocket
falling then?

e. How long did the rocket fall before the parachute opened?

f. When was the rocket’s acceleration greatest?

g. When was the acceleration constant? What was its value then
(to the nearest integer)?

18. The accompanying figure shows the velocity v = f(¢) of a parti-
cle moving on a coordinate line.

a. When does the particle move forward? Move backward?
Speed up? Slow down?

b. When is the particle’s acceleration positive? Negative? Zero?

c¢. When does the particle move at its greatest speed?

d. When does the particle stand still for more than an instant?

19. Two falling balls The multiflash photograph in the accompany-
ing figure shows two balls falling from rest. The vertical rulers
are marked in centimeters. Use the equation s = 490¢” (the free-
fall equation for s in centimeters and ¢ in seconds) to answer the
following questions.

-

¥

(RN R LL

»

(R R R REELL
® € ]

L]

f
\

L
a
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a. How long did it take the balls to fall the first 160 cm? What
was their average velocity for the period?

b. How fast were the balls falling when they reached the 160-cm
mark? What was their acceleration then?

c. About how fast was the light flashing (flashes per second)?

20. A traveling truck The accompanying graph shows the position

s of a truck traveling on a highway. The truck starts at # = 0 and

returns 15 h later at 1 = 15.

a. Use the technique described in Section 3.1, Example 3, to
graph the truck’s velocity v = ds/dt for 0 = ¢ =< 15. Then
repeat the process, with the velocity curve, to graph the
truck’s acceleration dv/dt.

b. Suppose that s = 15¢t2 — ¢, Graph ds/dt and d’s/dt* and
compare your graphs with those in part (a).

500

N
- \
W/Emm

L1 L1 L1
0 5 10 15
Elapsed time, # (hr)

Position, s (km)
(98]
S
S

[\
[
(=]

—_
[
S

21. The graphs in Figure 3.21 show the position s, velocity
v = ds/dt, and acceleration @ = d°s/dt* of a body moving along
a coordinate line as functions of time 7. Which graph is which?
Give reasons for your answers.

® ®

FIGURE 3.21 The graphs for Exercise 21.

22. The graphs in Figure 3.22 show the position s, the velocity
v = ds/dt, and the acceleration a = d%s/dt* of a body moving
along the coordinate line as functions of time 7. Which graph is

which? Give reasons for your answers.

©

FIGURE 3.22 The graphs for Exercise 22.

Economics

23. Marginal cost Suppose that the dollar cost of producing x
washing machines is ¢(x) = 2000 + 100x — 0.1x>.

a. Find the average cost per machine of producing the first 100
washing machines.

b. Find the marginal cost when 100 washing machines are
produced.

c. Show that the marginal cost when 100 washing machines are
produced is approximately the cost of producing one more
washing machine after the first 100 have been made, by
calculating the latter cost directly.

24. Marginal revenue
washing machines is

Suppose that the revenue from selling x

r(x) = 20,000 (1 - %)

dollars.
a. Find the marginal revenue when 100 machines are produced.

b. Use the function 7’(x) to estimate the increase in revenue that
will result from increasing production from 100 machines a
week to 101 machines a week.

c. Find the limit of 7' (x) as x — ©0. How would you interpret
this number?

Additional Applications

25. Bacterium population When a bactericide was added to a nu-
trient broth in which bacteria were growing, the bacterium popu-
lation continued to grow for a while, but then stopped growing
and began to decline. The size of the population at time # (hours)
was b = 10° + 10% — 10°>. Find the growth rates at
a. ¢t = 0 hours.

b. ¢ = 5 hours.

c. t = 10 hours.
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26.

27.

28.

29.

30.

Draining a tank The number of gallons of water in a tank 7 min-
utes after the tank has started to drain is Q(r) = 200(30 — 7).
How fast is the water running out at the end of 10 min? What is the
average rate at which the water flows out during the first 10 min?

Draining a tank It takes 12 hours to drain a storage tank by
opening the valve at the bottom. The depth y of fluid in the tank ¢
hours after the valve is opened is given by the formula

£\
y=6<1—ﬁ) m.

a. Find the rate dy/dt (m/h) at which the tank is draining at time 7.

b. When is the fluid level in the tank falling fastest? Slowest?
What are the values of dy/dt at these times?

c. Graph y and dy/dt together and discuss the behavior of y in
relation to the signs and values of dy/dt.

Inflating a balloon The volume ¥ = (4/3)7r? of a spherical
balloon changes with the radius.

a. At what rate (ft*/ft) does the volume change with respect to
the radius when r = 2 ft?

b. By approximately how much does the volume increase when

the radius changes from 2 to 2.2 {t?

Airplane takeoff Suppose that the distance an aircraft travels along
a runway before takeoff is given by D = (10/9)¢>, where D is
measured in meters from the starting point and 7 is measured in sec-
onds from the time the brakes are released. The aircraft will become
airborne when its speed reaches 200 km/h. How long will it take to
become airborne, and what distance will it travel in that time?

Volcanic lava fountains Although the November 1959 Kilauea
Iki eruption on the island of Hawaii began with a line of fountains
along the wall of the crater, activity was later confined to a single
vent in the crater’s floor, which at one point shot lava 1900 ft
straight into the air (a world record). What was the lava’s exit ve-
locity in feet per second? In miles per hour? (Hint: If vy is the exit
velocity of a particle of lava, its height ¢ sec later will be
s = vot — 16¢2ft. Begin by finding the time at which
ds/dt = 0. Neglect air resistance.)

183
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Exercises 31-34 give the position function s = f(#) of a body moving
along the s-axis as a function of time 7. Graph f together with the ve-
locity function v(t) = ds/dt = f'(¢) and the acceleration function
a(t) = d’s/dt* = f"(t). Comment on the body’s behavior in relation
to the signs and values of v and a. Include in your commentary such
topics as the following:

31.

32.
33.
34.
35.

a. When is the body momentarily at rest?
When does it move to the left (down) or to the right (up)?

&

¢. When does it change direction?
d. When does it speed up and slow down?
e. When is it moving fastest (highest speed)? Slowest?

f. When is it farthest from the axis origin?

s =200t — 1612, 0 =t = 12.5 (a heavy object fired straight
up from Earth’s surface at 200 ft/sec)

s=12—3t+2 0=t=<5

s=0£—62+7, 0=t=4

s=4-—Tt+62—1, 0=1r=4

Thoroughbred racing A racehorse is running a 10-furlong

race. (A furlong is 220 yards, although we will use furlongs and
seconds as our units in this exercise.) As the horse passes each
furlong marker (£), a steward records the time elapsed (#) since
the beginning of the race, as shown in the table:

F 01 2 3 4 5 6 7 8 9
t 0 20 33 46 59 73 86 100 112 124

10
135

a. How long does it take the horse to finish the race?
b. What is the average speed of the horse over the first 5 furlongs?

¢. What is the approximate speed of the horse as it passes the
3-furlong marker?

d. During which portion of the race is the horse running the
fastest?

e. During which portion of the race is the horse accelerating the
fastest?
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Derivatives of Trigonometric Functions

3.4

Many of the phenomena we want information about are approximately periodic (electro-
magnetic fields, heart rhythms, tides, weather). The derivatives of sines and cosines play a
key role in describing periodic changes. This section shows how to differentiate the six ba-
sic trigonometric functions.

Derivative of the Sine Function

To calculate the derivative of f(x) = sin x, for x measured in radians, we combine the lim-
its in Example 5a and Theorem 7 in Section 2.4 with the angle sum identity for the sine:

sin(x + 4) = sinxcosh + cosxsinh.
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If f(x) = sinx, then

i JE ) = SO
m-—

!
X) =
f'(x) Jlim 7
sin (x + h) — sinx
= Derivative definition
h—0 h
. (sinxcosh + cosxsinh) — sinx
= lim Sine angle sum identity
h—0 h
. sinx(cosh — 1) + cosxsinh
= lim
h—0 h
. . cosh — 1 . sin &
= lim |sinx-———— | + lim | cosx-
h—0 h h—0 h
. . cosh — 1 . sinh
=gsinx* lim ——— + cosx* lim ——
h—0 h h—0 h

=sinx*0 + cosx-1
= COSX.

Example 5(a) and
Theorem 7, Section 2.4

The derivative of the sine function is the cosine function:

d (sinx) = cosx
dx ’

EXAMPLE 1 Derivatives Involving the Sine

(@) y = x* — sinx:

a =2x — di (sinx) Difference Rule
= 2X — COSX.
(b) y = x?sinx:
dy d . .
I = xza (smx) + 2xsinx Product Rule
= x%cosx + 2xsinx.
_ sinx,
(C) Yy ="

dy x-d%;(sinx) —sinx-1

dx x2

_ Xcosx — sinx

X2

Derivative of the Cosine Function
With the help of the angle sum formula for the cosine,

cos(x + h) = cosxcosh — sinxsinh,

Quotient Rule
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|

FIGURE 3.23 The curve y' = —sinx as
the graph of the slopes of the tangents to
the curve y = cos x.
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we have

d cos(x + h) — cosx
a (COS x) = hln’}) 7 Derivative definition
—
_ 1 (COS X COS h - Sinx Sln h) — COSX Cosine ang]e sum
- hﬂlo h identity
. cosx(cosh — 1) — sinxsinh
= lim
h—0 h
. cosh — 1 . sin /1
= limcosx*———— — lim sinx*
h—0 h h—0 h
. cosh — 1 . . sinh
=cosx* lim ——— — sinx- lim
h—0 h h—0 h
=cosx*0 —sinx-1 Example 5(a) and
= —ginx Theorem 7, Section 2.4

The derivative of the cosine function is the negative of the sine function:

d .
e (cosx) = —sinx

© y=

Figure 3.23 shows a way to visualize this result.

EXAMPLE 2  Derivatives Involving the Cosine

(@) y =5x + cosx:

d
0% = C%IC(SX) + d%,c(cosx) Sum Rule
=5 — sinx.
(b) y = sinxcosx:
dy . d d .
e = s1nx$ (cos x) + cosx% (smx) Product Rule
= sinx(—sinx) + cosx(cosx)
= cos’x — sin’x.
COS X
] —sinx’

dy (1 — sinx)dii(cosx) - cosxa%(l — sinx)
dx (1 — sinx)?
(1 — sinx)(—sinx) — cosx(0 — cosx)

(1 — sinx)?

Quotient Rule

1 — sinx o, 5
= . 9 sin“x + cos“x = 1
(1 — sinx)
1
= . . .
1 — sinx
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-5

Lo Rest
position
Position at

=5
t=0

N

FIGURE 3.24 A body hanging from
a vertical spring and then displaced

oscillates above and below its rest position.

Its motion is described by trigonometric
functions (Example 3).

v=-5sint =5cost

v

3m \2m 5w

FIGURE 3.25 The graphs of the position
and velocity of the body in Example 3.

\\

Simple Harmonic Motion

The motion of a body bobbing freely up and down on the end of a spring or bungee cord is
an example of simple harmonic motion. The next example describes a case in which there
are no opposing forces such as friction or buoyancy to slow the motion down.

EXAMPLE 3  Motion on a Spring

A body hanging from a spring (Figure 3.24) is stretched 5 units beyond its rest position
and released at time # = 0 to bob up and down. Its position at any later time ¢ is

s = 5cost.

What are its velocity and acceleration at time ¢ ?

Solution ~ We have

Position: s = 5cost

Velocity: v = s _ 1(5 cost) = —5sint
dt dt
dv

Acceleration: a = = %(—5 sint) = —5cost.

dt
Notice how much we can learn from these equations:

1. As time passes, the weight moves down and up between s = —5 and s = 5 on the
s-axis. The amplitude of the motion is 5. The period of the motion is 27r.

2. Thevelocity v = —5 sin ¢ attains its greatest magnitude, 5, when cos ¢ = 0, as the graphs
show in Figure 3.25. Hence, the speed of the weight, |v| = 5| sin¢|, is greatest when
cost = 0, thatis, whens = 0 (the rest position). The speed of the weight is zero when
sint = 0.Thisoccurswhens = 5cos¢ = £5, at the endpoints of the interval of motion.

3. The acceleration value is always the exact opposite of the position value. When the
weight is above the rest position, gravity is pulling it back down; when the weight is
below the rest position, the spring is pulling it back up.

4. The acceleration, a = —5 cos ¢, is zero only at the rest position, where cos ¢t = 0 and
the force of gravity and the force from the spring offset each other. When the weight is
anywhere else, the two forces are unequal and acceleration is nonzero. The accelera-
tion is greatest in magnitude at the points farthest from the rest position, where
cost = %1. [

EXAMPLE 4  Jerk
The jerk of the simple harmonic motion in Example 3 is

. da

_d, e
j= dt_dt( 5cost) = 5sint.

It has its greatest magnitude when sin# = +1, not at the extremes of the displacement but
at the rest position, where the acceleration changes direction and sign. [

Derivatives of the Other Basic Trigonometric Functions
Because sin x and cos x are differentiable functions of x, the related functions

sin x CoS X

1
tanx = <5q v cotx = ——— SECX = og v and csCx = ————
CcoS x> sinx ’ cos x> sin x
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are differentiable at every value of x at which they are defined. Their derivatives, calcu-
lated from the Quotient Rule, are given by the following formulas. Notice the negative
signs in the derivative formulas for the cofunctions.

Derivatives of the Other Trigonometric Functions

d = 2
i (tanx) = sec*x

d _
I (secx) = secxtanx
2

d = —
e (cotx) = —csc*x

d _
I (cscx) = —cscx cotx

To show a typical calculation, we derive the derivative of the tangent function. The
other derivations are left to Exercise 50.

EXAMPLE 5
Find d(tan x)/dx.
Solution
. cosxi (sinx) — sinxi (cosx)
i( ) _d [sinx ) _ dx dx .
dx tanx ) = dx \cosx | = cos?x Quotient Rule
_cosxcosx — sinx (—sinx)
cos®x
_ cos’x + sin®x
cos’x
D
= 5~ = sectx [
cos” x
EXAMPLE 6
. Find y" ify = secx.
Video
Solution
y = secx

y = secxtanx

_d
V= (sec x tanx)

= secx % (tan x) + tanx % (sec x) Product Rule
= secx(sec’x) + tanx(secx tanx)

= sec®x + secxtan®x [ ]
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188 Chapter 3: Differentiation

The differentiability of the trigonometric functions throughout their domains gives
another proof of their continuity at every point in their domains (Theorem 1, Section 3.1).
So we can calculate limits of algebraic combinations and composites of trigonometric
functions by direct substitution.

EXAMPLE 7  Finding a Trigonometric Limit

V2 +secx  V2+secO0 = V2+1 _ﬁ__\/g

x—I}%) cos(m — tanx) cos(m — tan0) cos(m — 0) —1
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188 Chapter 3: Differentiation

EXERCISES 3.4

Derivatives

In Exercises 1-12, find dy/dx.

1. y = —10x + 3cosx 2.y=%+5sinx

3. y=cscx —4Vx +7 4.y=x2c0tx—i2
X

5. y = (secx + tanx)(secx — tanx)

6. y = (sinx + cosx) secx

7 _ _ cotx 8 _ _cosx
VT T ¥ cotx YT 1 ¥ sinx

_ 4 1 _ cosx X
9.y =Cosx T tanx 10. y = =% COS X

11. y = x%sinx + 2xcosx — 2sinx

12. y = x*cosx — 2xsinx — 2 cosx

In Exercises 13-16, find ds/dt.

13. s = tant — ¢ 14. s = > — sect + 1
1 + csct _ sint
15'S_l—csct 16'S_l—cost

In Exercises 1720, find dr/d6 .

17. r =4 — 6*sin@ 18. » = Asinf + cos 6
19. » = secOcsc 20. 7 = (1 + secH)sinO

In Exercises 21-24, find dp/dq.

1

21. p:5+cotq 22. p= (1 + cscq)cosq
__sing + cosgq _ tang
23. p = CoS ¢ 4. p= 1 + tang
25. Find y" if
a. y = cscx. b. y = secx.

26. Find y¥ = d*y/dx*if

a. y = —2sinx. b. y = 9cosx.

Tangent Lines

In Exercises 27-30, graph the curves over the given intervals, together
with their tangents at the given values of x. Label each curve and tan-
gent with its equation.
27. y =sinx, —37w/2 =x =27

x = —m,0,3m7/2

28. y =tanx, —7w/2<x<m/2
x=—7/3,0,7/3

29. y=secx, —7w2<x<m/2
x=-—m/3, 7/4

30. y=1+cosx, —3w/2=x=27w
x = —m/3,37/2

Do the graphs of the functions in Exercises 31-34 have any horizontal

tangents in the interval 0 = x =< 27 ? If so, where? If not, why not?
Visualize your findings by graphing the functions with a grapher.

31. y = x + sinx
32. y = 2x + sinx
33. y =x — cotx
34. y=x + 2cosx

35. Find all points on the curve y = tanx, —m/2 < x < /2, where
the tangent line is parallel to the line y = 2x. Sketch the curve
and tangent(s) together, labeling each with its equation.

36. Find all points on the curve y = cotx, 0 < x < v, where the
tangent line is parallel to the line y = —x. Sketch the curve and
tangent(s) together, labeling each with its equation.
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Exercise

Exercise

In Exercises 37 and 38, find an equation for (a) the tangent to the
curve at P and (b) the horizontal tangent to the curve at Q.

37. 38.
y y
-
1k
4+
0

y =44 cotx — 2csc x

I
1 2 3

o
INEYS

y=1 + V2 cscx + cotx

Trigonometric Limits
Find the limits in Exercises 39-44.

.. (1 1
39. )gl_rpz sin <§ - 5)

40. lim P V'1 + cos (7 csc x)

X—> —1T

41. lim sec[cosx + wtan( T ) - 1]
x—0 4 secx

42. lim sin (w)

*—0 tanx — 2secx
43. lim tan (1 — Lnt)
—0 t

44. lim cos (Lo)
6—0 sin 0

Simple Harmonic Motion

The equations in Exercises 45 and 46 give the position s = f(¢) of a
body moving on a coordinate line (s in meters, 7 in seconds). Find the
body’s velocity, speed, acceleration, and jerk at time ¢ = 7/4 sec.

45. s = 2 — 2sint 46. s = sint + cost

Theory and Examples

47. Is there a value of ¢ that will make

)
sin 23x’ c 20

_ X
o) = c, x=0

continuous at x = 0? Give reasons for your answer.

48.

49.
50.

51.

52.

53.

189
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Is there a value of b that will make

2(x) = {x-i—b,

COS X,

x <0

x=0

continuous at x = 0? Differentiable at x = 0? Give reasons for
your answers.

Find d°%°/dx**° (cos x).

Derive the formula for the derivative with respect to x of

c. cotx.

a. secx. b. cscx.

Graph y = cosx for =7 = x = 2. On the same screen, graph

sin(x + #) — sinx
Yy :T

for h =1,0.5,03, and 0.1. Then, in a new window, try
h=—1,-0.5, and —0.3. What happens as 7#—0"? As
h — 0~ ? What phenomenon is being illustrated here?

Graph y = —sinx for —7 = x = 2. On the same screen, graph

_cos(x + ) — cosx
B h

for h =1,0.5,03, and 0.1. Then, in a new window, try
h=—1,-0.5, and —0.3. What happens as h2—0%? As
h— 0~ ? What phenomenon is being illustrated here?

Centered difference quotients

f& +h) = fx — h)
2h

The centered difference quotient

is used to approximate f'(x) in numerical work because (1) its
limit as 2 — 0 equals f'(x) when f’(x) exists, and (2) it usually
gives a better approximation of f’(x) for a given value of / than
Fermat’s difference quotient

fx +h) — f(x)
7 .

See the accompanying figure.

y
Slope = f'(x)
Stope = L0 10
I
A 1
| ! Siope = 1 1) —fx—h)
I I I ope = 2h
I I I
y=r® | } }
I I I
I I I
I I I
I I I
| | |
I I I
L b b N
0 x—h X x+h
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54.

55,

Chapter 3: Differentiation

a. To see how rapidly the centered difference quotient for
f(x) = sinx converges to f'(x) = cosx, graph y = cosx
together with

sin(x + #) — sin(x — /)
2h

y =

over the interval [—7r, 277] for A = 1, 0.5, and 0.3. Compare
the results with those obtained in Exercise 51 for the same
values of 4.

b. To see how rapidly the centered difference quotient for
f(x) = cosx converges to f'(x) = —sinx, graph y = —sinx
together with

cos(x + h) — cos(x — h)
2h

over the interval [—ar, 277] for A = 1, 0.5, and 0.3. Compare
the results with those obtained in Exercise 52 for the same
values of 4.
A caution about centered difference quotients
of Exercise 53.) The quotient

fx+h) = fx = h)
2h

(Continuation

may have a limit as # — 0 when f has no derivative at x. As a case
in point, take f(x) = |x|and calculate

i [0+ 2| — |0 — A
hi% 2h ’

As you will see, the limit exists even though f(x) = |x|has no de-
rivative at x = 0. Moral: Before using a centered difference quo-
tient, be sure the derivative exists.

Slopes on the graph of the tangent function Graph y = tanx
and its derivative together on (—7/2, 7/2). Does the graph of the
tangent function appear to have a smallest slope? a largest slope?
Is the slope ever negative? Give reasons for your answers.

56.

57.

58.

Slopes on the graph of the cotangent function Graph
y = cotx and its derivative together for 0 < x < 7. Does the
graph of the cotangent function appear to have a smallest slope?
A largest slope? Is the slope ever positive? Give reasons for your
answers.
Exploring (sin kx) /x Graph y = (sinx)/x, y = (sin2x)/x, and
»y = (sin4x)/x together over the interval —2 = x = 2. Where
does each graph appear to cross the y-axis? Do the graphs really
intersect the axis? What would you expect the graphs of
»y = (sin5x)/x and y = (sin (—3x))/x to do as x —>0? Why?
What about the graph of y = (sin kx)/x for other values of k?
Give reasons for your answers.
Radians versus degrees: degree mode derivatives What hap-
pens to the derivatives of sin x and cos x if x is measured in de-
grees instead of radians? To find out, take the following steps.
a. With your graphing calculator or computer grapher in degree

mode, graph

_sinh
sy =
and estimate lim;,— f(%). Compare your estimate with 77/180.
Is there any reason to believe the limit should be /1807

b. With your grapher still in degree mode, estimate
lim €08 h—1
=0 h
c¢. Now go back to the derivation of the formula for the
derivative of sin x in the text and carry out the steps of the
derivation using degree-mode limits. What formula do you
obtain for the derivative?

d. Work through the derivation of the formula for the derivative
of cos x using degree-mode limits. What formula do you
obtain for the derivative?

e. The disadvantages of the degree-mode formulas become
apparent as you start taking derivatives of higher order. Try it.
What are the second and third degree-mode derivatives of
sin x and cos x?
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The Chain Rule and Parametric Equations

We know how to differentiate y = f(u) = sinu and u = g(x) = x> — 4, but how do we
differentiate a composite like F(x) = f(g(x)) = sin (x> — 4)? The differentiation formu-
las we have studied so far do not tell us how to calculate ' (x). So how do we find the de-
rivative of /' = f o g? The answer is, with the Chain Rule, which says that the derivative
of the composite of two differentiable functions is the product of their derivatives evalu-
ated at appropriate points. The Chain Rule is one of the most important and widely used
rules of differentiation. This section describes the rule and how to use it. We then apply the
rule to describe curves in the plane and their tangent lines in another way.
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Derivative of a Composite Function

We begin with examples.

EXAMPLE 1  Relating Derivatives

Video | The function y = %x = %(3x) is the composite of the functions y = %u and u = 3x.

How are the derivatives of these functions related?

Solution  We have

dy 3 dy 1 du
—-— =, - =, and - = 3.
dx 2 du 2 dx
! Since 3L 3, we see that
2 27
dy dy du
C:yturns  B:uturns A: x turns dc  du : e
FIGURE 3.26 When gear A makes x Is it an accident that
turns, gear B makes u turns and gear C
. dy dy du
makes y turns. By comparing circumferences - = .29
or counting teeth, we see that y = u/2 dx  du dx
(C turns one-half turn for each B turn) If we think of the derivative as a rate of change, our intuition allows us to see that this rela-
and u = 3x (B turns three times for A’s tionship is reasonable. If y = f(u) changes half as fast as u and u = g(x) changes three
one), so y = 3x/2. Thus, dy/dx = 3/2 = times as fast as x, then we expect y to change 3/2 times as fast as x. This effect is much like
(1/2)(3) = (dy/du)(du/dx). that of a multiple gear train (Figure 3.26). ]
% EXAMPLE 2
E_ l The function
Video y=0%u*+6x2+1=03x>+ 1)
is the composite of y = u? and u = 3x? + 1. Calculating derivatives, we see that
dy du
E * a = 2u-6x

=203x2+ 1)-6x
= 36x3 + 12x.

Calculating the derivative from the expanded formula, we get

' d o 2
dx—dx(9x +6x% + 1)
= 36x° + 12x.
Once again,
Ay du _ by -
du dx  dx’

The derivative of the composite function f(g(x)) at x is the derivative of f at g(x)
times the derivative of g at x. This is known as the Chain Rule (Figure 3.27).
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Composite fo g

Rate of change at

xis f(g00) - g

f

8

Rate of change Rate of change

at x is g'(x). at g(x) is f'(g(x)). —
‘ xis g'x ppng g(x)is f(glx ¥ = f @) = e

FIGURE 3.27 Rates of change multiply: The derivative of f o g at x is the
derivative of f at g(x) times the derivative of g at x.

THEOREM 3 The Chain Rule

If f(u) is differentiable at the point u = g(x) and g(x) is differentiable at x, then
the composite function (f © g)(x) = f(g(x)) is differentiable at x, and

(fog) ) = f(gkx)gx).
In Leibniz’s notation, if y = f(u) and u = g(x), then

b _ b du

dx  du dx’
where dy/du is evaluated at u = g(x).

Intuitive “Proof” of the Chain Rule:
Let Au be the change in u corresponding to a change of Ax in x, that is

Au = g(x + Ax) — g(x)
Then the corresponding change in y is

Ay = f(u + Au) — f(u).
It would be tempting to write

Ay _ Ay Au

Ax  Au Ax (1)
and take the limit as Ax —0:
dy y Ay
dx Axlgo Ax
— lim Y Au
Av—0 Au  Ax
= lim ﬂ im Au
Ax—0 Au  Ax—0 Ax
_ Ay  Au (Note that Au—>0 as Ax—0
- A;go Tu ) Alxlglo rx since g is continuous.)
_ B du
du dx’
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The only flaw in this reasoning is that in Equation (1) it might happen that Au = 0 (even
when Ax # 0) and, of course, we can’t divide by 0. The proof requires a different ap-
proach to overcome this flaw, and we give a precise proof in Section 3.8. [

EXAMPLE 3  Applying the Chain Rule

An object moves along the x-axis so that its position at any time ¢ = 0 is given by
x(t) = cos(¢? + 1). Find the velocity of the object as a function of 7.

Solution ~ We know that the velocity is dx/dt. In this instance, x is a composite function:

x = cos(u)andu = > + 1. We have

dx

du = —sm(u) x = cos(u)
du _ e
dr 2t. u=1t +1
By the Chain Rule,
dx _dv du
dt  du dt
= —sin(u) <2t % evaluated at u
= —sin(¢? + 1)+ 2t
= —2¢sin(#> + 1). u

As we see from Example 3, a difficulty with the Leibniz notation is that it doesn’t state
specifically where the derivatives are supposed to be evaluated.

“Outside-Inside” Rule
It sometimes helps to think about the Chain Rule this way: If y = f(g(x)), then

d
== e g ).

In words, differentiate the “outside” function f and evaluate it at the “inside” function g(x)
left alone; then multiply by the derivative of the “inside function.”

EXAMPLE 4  Differentiating from the Outside In

Differentiate sin (x> + x) with respect to x.

Solution

. sin (x2 + x) = cos (x2 + x)- (2x + 1) [

inside inside  derivative of
left alone  the inside

Repeated Use of the Chain Rule

We sometimes have to use the Chain Rule two or more times to find a derivative. Here is
an example.
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HISTORICAL BIOGRAPHY EXAMPLE 5 A Three-Link “Chain”

Johann Bernoulli Find the derivative of g(¢) = tan(5 — sin 21).
(1667-1748)

Solution  Notice here that the tangent is a function of 5 — sin 2¢, whereas the sine is a
function of 2¢, which is itself a function of z. Therefore, by the Chain Rule,

g'(t) = % (tan (5 — sin 21))

Derivative of tan u with
u=15—sin2t

S SO Ao
= sec” (5 — sin2¢) i (5 sm2t)

Derivative of 5 — sinu

. d
= sec’(5 — sin2¢) - (O — cos 2t-dt(2t)) with u = 2¢

= sec?(5 — sin2¢)+ (—cos 2¢)+ 2
= —2(cos 2t) sec’ (5 — sin 2¢). (]

The Chain Rule with Powers of a Function

If f is a differentiable function of u and if u is a differentiable function of x, then substitut-
ing y = f(u) into the Chain Rule formula

b _dy du
dx  du dx

leads to the formula
d oy g du
Gt = fa g

Here’s an example of how it works: If 7 is a positive or negative integer and f(u) = u",
the Power Rules (Rules 2 and 7) tell us that f'(x) = nu""'. If u is a differentiable function
of x, then we can use the Chain Rule to extend this to the Power Chain Rule:

—u" = nu"! @ i(u”) = nu""!

dx dx du

EXAMPLE 6  Applying the Power Chain Rule

Video (a) i(5x3 — x4)7 = 7(5x3 — 164)6i (5)(3 - x4) Power Chain Rule with
dx dx u=>53—-x*n=71
= 7(5x% — x*)%(5-3x% — 4x?)
= 7(5x3 — xH%(15x% — 4x?)
d(_1 _ diq oy
(b) dx (3x - 2) B dx(3x 2)
= —1(3x — 2)72 d (3x — 2) Power Chain Rule with
dx — 3 — —
u=3x—2,n=—1
= —1(3x — 2)2(3)
-3
(3x — 2)?
In part (b) we could also have found the derivative with the Quotient Rule. [
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EXAMPLE 7  Finding Tangent Slopes

(a) Find the slope of the line tangent to the curve y = sin’ x at the point where x = /3.

(b) Show that the slope of every line tangent to the curve y = 1/(1 — 2x)? is positive.

Solution

'y . d .
(a) 5 = 5sin*x- a S x Power Chain Rule with # = sinx,n = 5

= 5sin*xcosx

The tangent line has slope

b
dx

x=m/3 - 5(\?)4 (;> B %'

dy d 4
(b) - =-(1—2)

=3(1 — 2x)74‘d;dx(1 - 2x) Power Chain Rule withu = (1 — 2x),n = =3

=3(1 — 2x)™4-(=2)

-6
(1 — 2x)*
At any point (x, y) on the curve, x # 1/2 and the slope of the tangent line is
v_ 6
dx (1 — 2x)*’
the quotient of two positive numbers. [

EXAMPLE 8  Radians Versus Degrees

It is important to remember that the formulas for the derivatives of both sin x and cos x
were obtained under the assumption that x is measured in radians, not degrees. The Chain
Rule gives us new insight into the difference between the two. Since 180° = 7 radians,
x° = arx/180 radians where x° means the angle x measured in degrees.

By the Chain Rule,

isin(x") = isin TX ) = T os [ ) = T cos(x°)
dx dx 180 180 180 180 )

See Figure 3.28. Similarly, the derivative of cos (x°) is —(7/180) sin(x°).
The factor 7/180, annoying in the first derivative, would compound with repeated
differentiation. We see at a glance the compelling reason for the use of radian measure.
]

Parametric Equations

Instead of describing a curve by expressing the y-coordinate of a point P(x, y) on the curve
as a function of x, it is sometimes more convenient to describe the curve by expressing
both coordinates as functions of a third variable ¢. Figure 3.29 shows the path of a moving
particle described by a pair of equations, x = f(f) and y = g(¢). For studying motion,
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X

y = sin(x°) = sin 18)6

[ 180
y = sinx

FIGURE 3.28 Sin(x°) oscillates only 7r/180 times as often as sin x oscillates. Its maximum
slope is 7r/180 at x = 0 (Example 8).

t usually denotes time. Equations like these are better than a Cartesian formula because
they tell us the particle’s position (x, y) = (f(¢), g(¢)) at any time .

Position of particle

at time ¢ ) (f(n), g(0)

DEFINITION  Parametric Curve
If x and y are given as functions

x=fn, y=g
over an interval of z-values, then the set of points (x, y) = (f(¢), g(¢)) defined by

these equations is a parametric curve. The equations are parametric equations
FIGURE 3.29 The path traced by a for the curve.

particle moving in the xy-plane is not
always the graph of a function of x or a
function of y.

The variable ¢ is a parameter for the curve, and its domain / is the parameter inter-
val. If / is a closed interval, a = ¢t = b, the point (f(a), g(a)) is the initial point of the
y curve. The point (f(b), g(b)) is the terminal point. When we give parametric equations
2 +yr=1 and a parameter interval for a curve, we say that we have parametrized the curve. The
equations and interval together constitute a parametrization of the curve.
/- P(cost, sint)

EXAMPLE 9  Moving Counterclockwise on a Circle

Graph the parametric curves

t=a \! t=0 .
0 @0 Y (@ x=cost y = sint, 0=1t=2m.
(b) x = acost, y = asint, 0=1t=2m.
Solution
= 3777 (a) Since x> + y% = cos’t + sin’¢ = 1, the parametric curve lies along the unit circle
x2 + y2 = 1. As ¢ increases from 0 to 27, the point (x, y) = (cos?, sin) starts at
FIGURE 3.30 The equations x = cos ¢ (1, 0) and traces the entire circle once counterclockwise (Figure 3.30).
and y = sin ¢ describe motion on the circle  (b) Forx = acost,y = asint,0 = t = 27, wehave x* + y* = a®cos’t + a*sin’*t = a?.
x2 + y? = 1. The arrow shows the The parametrization describes a motion that begins at the point (a, 0) and traverses the
direction of increasing ¢ (Example 9). circle x* + y* = a? once counterclockwise, returning to (@, 0) at t = 27r. n

Copyright © 2005 Pearson Education, Inc., publishing as Pearson Addison-Wesley


http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html

1. n

(=]

Starts at
t=0

FIGURE 3.31 The equations x = V7
and y = ¢ and the interval # = 0 describe
the motion of a particle that traces the
right-hand half of the parabola y = x>
(Example 10).
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EXAMPLE 10  Moving Along a Parabola

The position P(x, y) of a particle moving in the xy-plane is given by the equations and pa-
rameter interval

x=Vt, y=t t=0.
Identify the path traced by the particle and describe the motion.
Solution ~ We try to identify the path by eliminating  between the equations x = V¢ and

y = t. With any luck, this will produce a recognizable algebraic relation between x and y.
We find that

y=t=<\ﬁ)2=x2.

Thus, the particle’s position coordinates satisfy the equation y = x?, so the particle moves
along the parabola y = x2.

It would be a mistake, however, to conclude that the particle’s path is the entire
parabola y = x?; it is only half the parabola. The particle’s x-coordinate is never negative.
The particle starts at (0, 0) when # = 0 and rises into the first quadrant as ¢ increases

(Figure 3.31). The parameter interval is[0, o) and there is no terminal point. ]

EXAMPLE 11  Parametrizing a Line Segment

Find a parametrization for the line segment with endpoints (=2, 1) and (3, 5).

Solution  Using (—2, 1) we create the parametric equations
x = =2+ at, y =1+ bt
These represent a line, as we can see by solving each equation for ¢ and equating to obtain

x+2=y_1

a b

This line goes through the point (—2, 1) when ¢ = 0. We determine a and b so that the line
goes through (3, S) when ¢t = 1.

3=—-2+a = a=>5 x =3whent=1.

1 +b e b=4 vy =Swhent = 1.

Therefore,
x = —2 + 5¢, y =1+ 4, 0=r=1

is a parametrization of the line segment with initial point (—2, 1) and terminal point (3, 5).
]

Slopes of Parametrized Curves

A parametrized curve x = f(z) and y = g(¢) is differentiable at 7 if f and g are differen-
tiable at #. At a point on a differentiable parametrized curve where y is also a differentiable
function of x, the derivatives dy/dt, dx/dt, and dy/dx are related by the Chain Rule:

dy _ dy dx
dt ~dxdt

If dx/dt # 0, we may divide both sides of this equation by dx/dr to solve for dy/dx.
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Parametric Formula for dy /dx
If all three derivatives exist and dx/dt # 0,
dy  dy/dt

A~ dvjdi @

EXAMPLE 12
Ifx =2t + 3and y = > — 1, find the value of dy/dx att = 6.

Differentiating with a Parameter

Solution  Equation (2) gives dy/dx as a function of 7.

dy _dfdt _ 2t _x-—3

dx dx/dt 2 2 -
When ¢ = 6, dy/dx = 6. Notice that we are also able to find the derivative dy/dx as a
function of x. u
EXAMPLE 13 Moving Along the Ellipse x*/a® + y?/b* = 1

Describe the motion of a particle whose position P(x, y) at time ¢ is given by

X = acost, y = bsint, 0=¢t=2m.

Find the line tangent to the curve at the point (a/ V2, b/ \/2), where ¢t = /4. (The con-
stants a and b are both positive.)

Solution =~ We find a Cartesian equation for the particle’s coordinates by eliminating ¢ be-
tween the equations

X .
cost =, smt—z.

The identity cos® ¢ + sin®¢ = 1, yields

2 2 5 2
X Yy X Y
(a> + <b> =1, or ;4—?: 1.

The particle’s coordinates (x, y) satisfy the equation (x*/a?) + (y*/b?) = 1, so the parti-
cle moves along this ellipse. When # = 0, the particle’s coordinates are

x = acos(0) = a, y = bsin(0) =0,

so the motion starts at (a, 0). As ¢ increases, the particle rises and moves toward the left,
moving counterclockwise. It traverses the ellipse once, returning to its starting position
(a,0)at? = 2.

The slope of the tangent line to the ellipse when ¢ = /4 is

dy _dy/dt
dx t=m/4 dX/dt t=m/4
_ bcost
—asint|,_.,

_ V2
—a/\/Z “
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The tangent line is

or

y=—§x+\6b. [

If parametric equations define y as a twice-differentiable function of x, we can apply
Equation (2) to the function dy/dx = y' to calculate d?y/dx* as a function of #:
d’y 4 ) = dy'/dt
dx?  dx Y= dx/dt ”

Eq. (2) with y" in place of y

Parametric Formula for d?y /dx*
If the equations x = f(¢), y = g(¢) define y as a twice-differentiable function of
x, then at any point where dx/dt # 0,

d’y dy'/dt

dx>  dx/dt’

(3)

EXAMPLE 14  Finding d?y/dx® for a Parametrized Curve

Find d%y/dx? as a function of tif x = ¢t — 1%, y =t — £°.

Soluti
| Finding d2y/dx? in Terms of t orution
1. Express y' = dy/dx in terms of 7. 1. Express y' = dy/dx in terms of ¢.
2. Find dy'/dt. ,
3. Divide dy'/dt by dx/dt. ,_ Ay _dyjdt 1 -3

Y T dx T odxjdt T 12
2. Differentiate y" with respect to .

dy' _d (1 — 3t2) _2-6r+ 61> Quotient Rule
1—2¢ (1 — 2t)?

dt — dt

3. Divide dy'/dt by dx/dt.
dy dy'jdt (2 — 61+ 6:°)/(1 =20 2 — 61 + 672

dx? B dx/dt B 1 — 2¢ a (1 — 2t)3

Eq. (3) ]

EXAMPLE 15  Dropping Emergency Supplies

A Red Cross aircraft is dropping emergency food and medical supplies into a disaster area.
If the aircraft releases the supplies immediately above the edge of an open field 700 ft long
and if the cargo moves along the path

x=120t and y=—162+500, =0
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500¢

Position of aircraft at release

Path of dropped cargo

0

Open field 2700

FIGURE 3.32 The path of the dropped
cargo of supplies in Example 15.

{ x(t)=2

y(t) = 160t -1612
and
x(t)y=t

{y(t)= 160t —16¢2

in dot mode

does the cargo land in the field? The coordinates x and y are measured in feet, and the pa-
rameter ¢ (time since release) in seconds. Find a Cartesian equation for the path of the
falling cargo (Figure 3.32) and the cargo’s rate of descent relative to its forward motion
when it hits the ground.

Solution  The cargo hits the ground when y = 0, which occurs at time f when

—16¢* + 500 = 0 Set y = 0.

= 500 _sVs o
16 2 %% =
The x-coordinate at the time of the release is x = 0. At the time the cargo hits the ground,

the x-coordinate is
x = 1207 = 120(5\2£> = 300\V/5 ft.

Since 300\V/5 ~ 670.8 < 700, the cargo does land in the field.
We find a Cartesian equation for the cargo’s coordinates by eliminating ¢ between the
parametric equations:

y = —161‘2 + 500 Parametric equation for y
2
_ X Substitute for 7 from the
=16 <120> + 500 equation x = 120¢.
__ 1
= — WX + 500. A parabola
The rate of descent relative to its forward motion when the cargo hits the ground is
dy _dy/dt
dx|i=s\/3p  dx/dt|,—s\/5
_ 3%
120 | =5y

—1.49.

_2V5
S LANN

Thus, it is falling about 1.5 feet for every foot of forward motion when it hits the ground.
]

USING TECHNOLOGY Simulation of Motion on a Vertical Line

The parametric equations

x(t) =c¢,  y1) = f(0)

will illuminate pixels along the vertical line x = c¢. If f(¢) denotes the height of a moving

body at time ¢, graphing (x(¢), y(¢)) = (¢, f(¢)) will simulate the actual motion. Try it for

the rock in Example 5, Section 3.3 with x(¢) = 2, say, and y(¢) = 160t — 16¢%, in dot

mode with #Step = 0.1. Why does the spacing of the dots vary? Why does the grapher seem

to stop after it reaches the top? (Try the plots for0 = ¢ = S5and 5 = ¢ = 10 separately.)
For a second experiment, plot the parametric equations

x(t) =1,  y(t) = 160t — 161>
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together with the vertical line simulation of the motion, again in dot mode. Use what you
know about the behavior of the rock from the calculations of Example 5 to select a win-
dow size that will display all the interesting behavior.

Standard Parametrizations and Derivative Rules
2 2
CIRCLE  x2 + y? = a%: ELLIPSE % + ny =1:
a b
X = acost X = acost
y = asint y = bsint
0=t=2mw 0=¢t=2m
FuncTiON  y = f(x): DERIVATIVES
x=t . dy dy/dt d’y dy'/dt
v = f(1) Y T ax T dxdt ax? dx/dt
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Derivative Calculations

In Exercises 1-8, given y = f(u) and u = g(x), find dy/dx =

22.

f'(gx))g' (x).

Ly=6u—9 u=(1/2x" 2. y=2u3 u=8—1

3. y=sinu, u=3x+1 4. y =cosu, u= —x/3

5. y =cosu, u=sinx 6. y =sinu, u=x — cosx
7. y=tanu, u=10x —5 8. y = —secu, u=x*+"7x

In Exercises 9-18, write the function in the form y = f(u) and

u = g(x). Then find dy/dx as a function of x.

23. r = (csch + cotf)™!

25. y = x2sin*x + xcos 2x

27. y=%(3x—2)7+ (4—

s = sin 3mt + cos 3mt
2 2

24. r = —(sec6 + tan )"

5 3

X
X — 57 COS™ X

26. y = %sin_ 3

_ 3, 1(2 !
28. y=(5—-2x) +§ }4‘1

29. y = (4x + 3)*(x + 1)
31. h(x) = xtan (2Vx) + 7

sin 6

2
3. J(0) = (1 + cosB)

35. r = sin(6?) cos(26)

37. ¢ = sin (A)
Vit

30. y = (2x — 5)7'(x? — 5x)°

32. k(x) = x?sec (%)

1+ cost)
sin ¢

34. g(t) = (
36. r = sec\/étan (l)

0
38. ¢ = cot <s17nt)

9. y=(2x+ 1) 10. y = (4 — 3x)°
A\ o -10
11.y=<1—7> 12.y=<5—1>
2 4 5
_ (X _1 (x4 L
13.y—(8+x x) 14. y <5+5x>
15. y = sec(tanx) 16. y = cot(Tr - %)
17. y = sin’x 18. y = 5cos *x
Find the derivatives of the functions in Exercises 19-38.
19. p=V3—1¢ 20. g = V2r — 2
21. s = isin3t + icosSt
3 S

In Exercises 3948, find dy/dt.

39. y = sin’ (7t — 2)
41. y = (1 + cos20)™*

40. y = sec’® t
42. y = (1 + cot(#/2))2
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43. y = sin(cos(2t — 5)) 44,

3
45. y = (1 + tan* <12>> 46.

47. y = V1 + cos (£?) 48.

)
7t)

y = 1(l-i-cos( )

y=4sin(\/l+\/f)

Second Derivatives
Find y” in Exercises 49-52.

Find the derivatives with respect to x of the following combina-
tions at the given value of x,

a. 5f(x) —gx), x=1 b. f(x)g’(x), x=0
cL x=1 d. f(g(x)), x=0
gl +1° - S

e. g(f(x)), x=0 f. '+ )2 x=1

g fx+gkx), x=0

49. y = (1 +%)3 50. y = (1 - Vx)'

y = 9tan (g)

51y = écot(ﬁ%x -1 52.

61. Find ds/dt when 0 = 37/2 if s = cosf and df/dt = 5.
62. Find dy/dt whenx = 1if y = x> + 7x — 5and dx/dt = 1/3.

Finding Numerical Values of Derivatives
In Exercises 5358, find the value of (f © g)’ at the given value of x.

53, fu) =u’ + 1, u=g(x) =V

54. f(u):l—%, u:g(x)zllx,

x =1

x = —1

55. f(u)—cotlo, u=g(x)=5Vx, x=1

56. f , u=gx)=mx, x=1/4
57. f(u) = 2u , u=gx) =10 +x+1, x=0
w? + 1
1Y 1
58.f()—<u+1) u=g(x)=;*l, x = -1

Choices in Composition

What happens if you can write a function as a composite in different
ways? Do you get the same derivative each time? The Chain Rule says
you should. Try it with the functions in Exercises 63 and 64.

63. Find dy/dx if y = x by using the Chain Rule with y as a compos-
ite of

a. y=(u/5)+7 and u = 5x— 35
b. y=1+(1/u) and u=1/(x —1).

64. Find dy/dx if y = x% by using the Chain Rule with y as a com-
posite of

a. y=u’ and u=Vix
b. y=Vu and u= x>

Tangents and Slopes

59. Suppose that functions f and g and their derivatives with respect
to x have the following values atx = 2 and x = 3.

x fx) g f'® g' )
2 8 2 1/3 -3
3 3 —4 2 5

Find the derivatives with respect to x of the following combina-
tions at the given value of x.

a. 2f(x), x=2 b. f(x) +gx), x=3

c. f(x)-glx), x=3 d. f(x)/gx), x=2

e. flglx)), x=2 f. Vikx), x=2

g 1/g%x), x=3 h. Vi x) + g%(x), x=2

60. Suppose that the functions f and g and their derivatives with re-
spect to x have the following values at x = Oand x = 1.

x fx) g ') g'(x)
1 1 5 1/3
1 3 —4 ~1/3 ~8/3

65. a.

b. Slopes on a tangent curve What is the smallest value the
slope of the curve can ever have on the interval
—2 < x < 2? Give reasons for your answer.

Find the tangent to the curve y = 2 tan(m7x/4) atx = 1.

66. Slopes on sine curves

a. Find equations for the tangents to the curves y = sin 2x and
y = —sin(x/2) at the origin. Is there anything special about
how the tangents are related? Give reasons for your answer.

b. Can anything be said about the tangents to the curves
y = sinmx and y = —sin(x/m) at the origin
(m a constant # 0)? Give reasons for your answer.

c¢. For a given m, what are the largest values the slopes of the
curves y = sinmx and y = —sin(x/m) can ever have? Give
reasons for your answer.

d. The function y = sinx completes one period on the interval
[0, 27r], the function y = sin 2x completes two periods, the
function y = sin(x/2) completes half a period, and so on. Is
there any relation between the number of periods y = sin mx
completes on [0, 277] and the slope of the curve y = sin mx at
the origin? Give reasons for your answer.

Finding Cartesian Equations from
Parametric Equations

Exercises 67—78 give parametric equations and parameter intervals for
the motion of a particle in the xy-plane. Identify the particle’s path by
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Exercise

finding a Cartesian equation for it. Graph the Cartesian equation. (The
graphs will vary with the equation used.) Indicate the portion of the
graph traced by the particle and the direction of motion.

67. x =cos2t, y=sin2t, 0=t=

68. x =cos(m — 1), y=sin(m —1¢), 0=t=m
69. x =4cost, y=2sint, 0=1¢t=2mw

70. x = 4sint, y = S5cost, 0=1¢=2m
7. x =3t y=9%, —o0 << o0

72. x=-Vi y=t t=0

73. x=2t—=5, y=4—-7, —00<t<X®
74. x=3-3t, y=2t, 0=tr=1
75.x=1, y=VI1—-¢ —-1=1=0

76. x=Vt+1, y=Vt t=0

77. x =sec’t — 1, y=tant, —7/2 <t<m/2
78. x = —sect, y=tant, —7w/2 <t < m/2

Determining Parametric Equations

79. Find parametric equations and a parameter interval for the motion

of a particle that starts at (, 0) and traces the circle x> + y? = 4>
a. once clockwise. b. once counterclockwise.
¢. twice clockwise. d. twice counterclockwise.

(There are many ways to do these, so your answers may not be the
same as the ones in the back of the book.)

80. Find parametric equations and a parameter interval for the motion
of a particle that starts at (a, 0) and traces the ellipse
(x*/a®) + (¥/p%) =1
a. once clockwise. b. once counterclockwise.

c. twice clockwise. d. twice counterclockwise.
(As in Exercise 79, there are many correct answers.)

In Exercises 81-86, find a parametrization for the curve.

81. the line segment with endpoints (—1, —3) and (4, 1)

82. the line segment with endpoints (—1, 3) and (3, —2)

83. the lower half of the parabola x — 1 = y?

84. the left half of the parabola y = x> + 2x

8S. the ray (half line) with initial point (2, 3) that passes through the
point (—1, —1)

86. the ray (half line) with initial point (—1, 2) that passes through
the point (0, 0)

Tangents to Parametrized Curves

In Exercises 8§7-94, find an equation for the line tangent to the curve
at the point defined by the given value of 7. Also, find the value of
d?y/dx? at this point.

3.5 The Chain Rule and Parametric Equations 203

90. x=-Vr+1, y=\31, t=3
9. x=202+3, y=1¢* t=-1

92. x =1t —sint, y=1—cost, t=m/3
93. x =cost, y=1+sint, t=m/2
94, x =sec’t — 1, y=tant, t= —7/4

87. x = 2cost, y =2sint, t=w/4
88. x = cost, y= \/gcost, t=2m/3

89. x=1 y=Vi, t=1/4

Theory, Examples, and Applications

95. Running machinery too fast Suppose that a piston is moving
straight up and down and that its position at time # sec is

s = Acos(2mbt),

with 4 and b positive. The value of A4 is the amplitude of the mo-
tion, and b is the frequency (number of times the piston moves up
and down each second). What effect does doubling the frequency
have on the piston’s velocity, acceleration, and jerk? (Once you find
out, you will know why machinery breaks when you run it too fast.)

96. Temperatures in Fairbanks, Alaska The graph in Figure 3.33
shows the average Fahrenheit temperature in Fairbanks, Alaska,
during a typical 365-day year. The equation that approximates the
temperature on day x is

2

y = 37sin {%(x — 101)} + 25.

a. On what day is the temperature increasing the fastest?

b. About how many degrees per day is the temperature
increasing when it is increasing at its fastest?

y

60 =
_ e
;_;40
2 I NG IS 1 S U IR AP AU | NG U S N N
= 20 N /
(9} £ /
£ / 4
S OF—r7r—T-—T-—T—T—T—7—1—-g——— -7 —Px
= N )/

= e

FEF IS FAP LIS

FIGURE 3.33 Normal mean air temperatures at Fairbanks,
Alaska, plotted as data points, and the approximating sine
function (Exercise 96).

97. Particle motion The position of a particle moving along a co-

ordinate line is s = V1 + 4¢, with s in meters and ¢ in seconds.
Find the particle’s velocity and acceleration at # = 6 sec.

98. Constant acceleration Suppose that the velocity of a falling
body is v = kV/s m/sec (k a constant) at the instant the body has
fallen s m from its starting point. Show that the body’s accelera-
tion is constant.
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99.

100.

101.

102.

103.

104.

105.

106.

Chapter 3: Differentiation

Falling meteorite The velocity of a heavy meteorite entering
Earth’s atmosphere is inversely proportional to Vs when it is s
km from Earth’s center. Show that the meteorite’s acceleration is
inversely proportional to s2.

Particle acceleration A particle moves along the x-axis with
velocity dx/dt = f(x). Show that the particle’s acceleration is
JG)f'(x).

Temperature and the period of a pendulum For oscillations
of small amplitude (short swings), we may safely model the rela-
tionship between the period 7 and the length L of a simple pen-

dulum with the equation
T = 277\/Z,

where g is the constant acceleration of gravity at the pendulum’s lo-
cation. If we measure g in centimeters per second squared, we meas-
ure L in centimeters and 7 in seconds. If the pendulum is made of
metal, its length will vary with temperature, either increasing or de-
creasing at a rate that is roughly proportional to L. In symbols, with
u being temperature and & the proportionality constant,

dL
o kL.
Assuming this to be the case, show that the rate at which the pe-

riod changes with respect to temperature is k7/2.

Chain Rule Suppose that f(x) = x* and g(x) = |x|. Then the
composites

(f e @x) = |x[*=x* and (g° f)x) =|x? = x?

are both differentiable at x = 0 even though g itself is not differ-
entiable at x = 0. Does this contradict the Chain Rule? Explain.

Tangents Suppose that u = g(x) is differentiable at x = 1 and
that y = f(u) is differentiable at u = g(1). If the graph of
y = f(g(x)) has a horizontal tangent at x = 1, can we conclude
anything about the tangent to the graph of g at x = 1 or the tan-
gent to the graph of fatu = g(1)? Give reasons for your answer.
Suppose that u = g(x) is differentiable at x = —5,y = f(u) is
differentiable at u = g(—5), and (f ° g)'(—5) is negative.
What, if anything, can be said about the values of g’'(—5) and
f'(g(=5))?

The derivative of sin 2x Graph the function y = 2 cos 2x for
—2 = x = 3.5. Then, on the same screen, graph

sin 2(x + A) — sin 2x
h

for » = 1.0, 0.5, and 0.2. Experiment with other values of 4, in-
cluding negative values. What do you see happening as # —0?
Explain this behavior.

The derivative of cos(x?) Graph y = —2xsin(x?) for
—2 = x = 3. Then, on the same screen, graph

~cos ((x + h)?) — cos (x?)
B h

for # = 1.0, 0.7, and 0.3. Experiment with other values of 4.

What do you see happening as # — 0? Explain this behavior.

The curves in Exercises 107 and 108 are called Bowditch curves or
Lissajous figures. In each case, find the point in the interior of the first
quadrant where the tangent to the curve is horizontal, and find the

equations of the two tangents at the origin.
107. y 108. y

X = sint
y = sin 2t 1

X = sin2¢
y = sin 3¢

Using the Chain Rule, show that the power rule (d/dx)x" = nx""!

holds for the functions x” in Exercises 109 and 110.

109. x4 = VX 110. x** = VxVix

COMPUTER EXPLORATIONS
Trigonometric Polynomials
111. As Figure 3.34 shows, the trigonometric “polynomial”

s = f(¢) = 0.78540 — 0.63662 cos 2¢ — 0.07074 cos 6¢
—0.02546 cos 10t — 0.01299 cos 14¢

gives a good approximation of the sawtooth function s = g(¢)
on the interval [—ar, 7w]. How well does the derivative of f ap-
proximate the derivative of g at the points where dg/dt is de-

fined? To find out, carry out the following steps.

a. Graph dg/dr (where defined) over [—r, 7].

b. Find df/dt.

c. Graph df/dt. Where does the approximation of dg/dt by
df/dt seem to be best? Least good? Approximations by
trigonometric polynomials are important in the theories of

heat and oscillation, but we must not expect too much of
them, as we see in the next exercise.

FIGURE 3.34 The approximation of a
sawtooth function by a trigonometric
“polynomial” (Exercise 111).
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112. (Continuation of Exercise 111.) In Exercise 111, the trigonomet- a. Graph dk/dt (where defined) over [—, 77].
ric polynomial f(7) that approximated the sawtooth function g(7) b. Find dh/dt.
on [—mr, 7] had a derivative that approximated the derivative of
the sawtooth function. It is possible, however, for a trigonometric
polynomial to approximate a function in a reasonable way with-
out its derivative approximating the function’s derivative at all
well. As a case in point, the “polynomial”

c. Graph dh/drt to see how badly the graph fits the graph of
dk/dt. Comment on what you see.

Parametrized Curves

) ) ) Use a CAS to perform the following steps on the parametrized curves
s = h(l) = 1.2732 sin 2t + 0.4244 sin 6¢ + 0.25465 sin 10¢ in Exercises 113-116.

+ 0.18189 sin 147 + 0.14147 sin 18¢ a. Plot the curve for the given interval of ¢ values.

graphed in Figure 3.35 approximates the step function s = k() b. Find dy/dx and d*y/dx* at the point #y.
shown there. Yet the derivative of / is nothing like the derivative

” c. Find an equation for the tangent line to the curve at the point
of k.

defined by the given value #,. Plot the curve together with
the tangent line on a single graph.

s—k
52 k) 113.x:%t3, :%tz, 0=1=1, 1p=1/2

/: h(t
1 o= ® M. x =20 — 162 +25(+5, y=r2+1-3, 0=1=6,
| ty = 3/2
t
-7 _g\ 0 g\ 77’ 115. x =t —cost, y=1+sint, —w=t=m, t=m7/4
-1 116. x = e'cost, y =e'sint, 0=t=m, 1= m/2
FIGURE 3.35 The approximation of a
step function by a trigonometric

“polynomial” (Exercise 112).
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3.6 Implicit Differentiation

y
yi= V25 — x?
=T 0 I
/ G, -4
vy =-V25 —x? Slope:—gz%

FIGURE 3.36 The circle combines the
graphs of two functions. The graph of y; is

the lower semicircle and passes through
(3, -4).

Most of the functions we have dealt with so far have been described by an equation of the
form y = f(x) that expresses y explicitly in terms of the variable x. We have learned rules
for differentiating functions defined in this way. In Section 3.5 we also learned how to find
the derivative dy/dx when a curve is defined parametrically by equations x = x(¢) and
v = y(#). A third situation occurs when we encounter equations like

x2+y?—25=0, y:—x=0, or x>+ y>—9xy=0.

(See Figures 3.36, 3.37, and 3.38.) These equations define an implicit relation between the
variables x and y. In some cases we may be able to solve such an equation for y as an ex-
plicit function (or even several functions) of x. When we cannot put an equation
F(x,y) = 0 in the form y = f(x) to differentiate it in the usual way, we may still be able
to find dy/dx by implicit differentiation. This consists of differentiating both sides of the
equation with respect to x and then solving the resulting equation for y’. This section de-
scribes the technique and uses it to extend the Power Rule for differentiation to include ra-
tional exponents. In the examples and exercises of this section it is always assumed that the
given equation determines y implicitly as a differentiable function of x.

Implicitly Defined Functions

We begin with an example.

Copyright © 2005 Pearson Education, Inc., publishing as Pearson Addison-Wesley


http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html

206 Chapter 3: Differentiation

3 y2:x 1 1
Slope = 57— = ——=
2
\)’1 2V y]:\/;c
TP(x, V)
[
[
[
‘ x
0 |
[
L0, —Vix)
va= —Vax
Slopeziz— I
2y, 2Vi

FIGURE 3.37 The equation y> — x = 0,
or y2 = x as it is usually written, defines
two differentiable functions of x on the
interval x = 0. Example 1 shows how to
find the derivatives of these functions
without solving the equation y? = x for y.

y=f(

(g o) * Y =)

FIGURE 3.38 The curve

x> + y3 — 9xy = 0is not the graph

of any one function of x. The curve can,
however, be divided into separate arcs that
are the graphs of functions of x. This
particular curve, called a folium, dates to
Descartes in 1638.

EXAMPLE 1  Differentiating Implicitly
Find dy/dx if y* = x.

Solution  The equation y? = x defines two differentiable functions of x that we can actu-
ally find, namely y; = Vx and y, = —V/x (Figure 3.37). We know how to calculate the
derivative of each of these for x > 0:

1 amd  P2___1

dx  2/x dx 2Vx
But suppose that we knew only that the equation y*> = x defined y as one or more differ-
entiable functions of x for x > 0 without knowing exactly what these functions were.
Could we still find dy/dx?
The answer is yes. To find dy/dx, we simply differentiate both sides of the equation
y? = x with respect to x, treating y = f(x) as a differentiable function of x:

2

yoox The Chain Rule gives - (%) =

dy 15 naim rule gl\ €S Ll\‘ .], -
2y— = 1 1 2 . . at"

ds L[] = 200 = .

d_ 1

dx 2y’

This one formula gives the derivatives we calculated for both explicit solutions y; = Vx
and y, = —Va:

] 1 b 1 1 1 .

dx  2» 2(—V5) 2Vx

& " 2n 2k

EXAMPLE 2  Slope of a Circle at a Point
Find the slope of circle x> + y? = 25 at the point (3, —4).

Solution  The circle is not the graph of a single function of x. Rather it is the combined
graphs of two differentiable functions, y; = V25 — x? and y, = —\V25 — x? (Figure
3.36). The point (3, —4) lies on the graph of y,, so we can find the slope by calculating
explicitly:

deles 2V2s -2l 2V25 -9 4

But we can also solve the problem more easily by differentiating the given equation of the
circle implicitly with respect to x:

@)+ 507 =2 (2)

dy
2x+2ya=0
b x
dx Y-
" __3 _3
The slope at (3, —4) is Vo 4 &
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y
4l y? = x> + sinxy
2_
I I I I x
-4 -2 2 4
o+
4l

FIGURE 3.39 The graph of

y? = x% + sinxy in Example 3. The
example shows how to find slopes on this
implicitly defined curve.

Tangent

Curve of lens

. surface
Normal line

Point of entry

FIGURE 3.40 The profile of a lens,
showing the bending (refraction) of a ray
of light as it passes through the lens
surface.
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Notice that unlike the slope formula for dy,/dx, which applies only to points below the
x-axis, the formula dy/dx = —x/y applies everywhere the circle has a slope. Notice also
that the derivative involves both variables x and y, not just the independent variable x. [

To calculate the derivatives of other implicitly defined functions, we proceed as in Ex-
amples 1 and 2: We treat y as a differentiable implicit function of x and apply the usual
rules to differentiate both sides of the defining equation.

EXAMPLE 3  Differentiating Implicitly
Find dy/dx if y* = x* + sinxy (Figure 3.39).

Solution
y? = x? + sinxy
d d d /. Differentiate both sides with
a(yZ) = a(xz) + a(smxy) respect to x...
d ... treating y as a function of
2y zﬁ = 2x + (cosxy) %(xy) x and using the Chain Rule.
dy dy
2y I =2x + (cosxy)|y + x I Treat xy as a product.
dy dy : .
2y a - (COS xy) (x dx) =2x + (COS xy)y Collect terms with dy/dx . ..
d
(2y — xcosxy) a% = 2x + ycosxy ... and factor out dy/dx.

dy  2x + ycosxy

e 2y — xcosxy Solve for dy/dx by dividing.

Notice that the formula for dy/dx applies everywhere that the implicitly defined curve has
a slope. Notice again that the derivative involves both variables x and y, not just the inde-
pendent variable x. [

Implicit Differentiation

1. Differentiate both sides of the equation with respect to x, treating y as a differ-
entiable function of x.

2. Collect the terms with dy/dx on one side of the equation.
3. Solve for dy/dx.

Lenses, Tangents, and Normal Lines

In the law that describes how light changes direction as it enters a lens, the important an-
gles are the angles the light makes with the line perpendicular to the surface of the lens at
the point of entry (angles 4 and B in Figure 3.40). This line is called the normal to the sur-
face at the point of entry. In a profile view of a lens like the one in Figure 3.40, the normal
is the line perpendicular to the tangent to the profile curve at the point of entry.
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,Q',&
«%“q’e

B HyP—oxy=0

Y

0 2

FIGURE 3.41 Example 4 shows how to
find equations for the tangent and normal
to the folium of Descartes at (2, 4).

EXAMPLE 4  Tangent and Normal to the Folium of Descartes

Show that the point (2, 4) lies on the curve x> + y* — 9xy = 0. Then find the tangent and
normal to the curve there (Figure 3.41).

Solution  The point (2, 4) lies on the curve because its coordinates satisfy the equation
given for the curve: 2° + 4> — 9(2)(4) = 8 + 64 — 72 = 0.

To find the slope of the curve at (2, 4), we first use implicit differentiation to find a
formula for dy/dx:

i(x3) + i(y3) _ %(9)0;) _ 1(0) Differentiate both sides

dx dx dx with respect to x.
32 + 3}12@ _ @ n y@ -0 Trca:‘x'\f‘a‘s a prlf)duct and y
dx dx dx as a function of x.

d
(3y? — 9x)(% +3x2 -9y =0

d
3% — 3x)?z = 9y — 3¢

Q_3y—x2
dx_y2—3x.

Solve for dy/dx.

We then evaluate the derivative at (x, y) = (2, 4):

34 -2 g 4

dy _3y—x2

dx

a #-302) 10 5

@4 - 3x
The tangent at (2, 4) is the line through (2, 4) with slope 4/5:

y=4+%(x—2)
y=%x+%.

The normal to the curve at (2, 4) is the line perpendicular to the tangent there, the line
through (2, 4) with slope —5/4:

5
y=4-7k=-2)

y = —%x + 7 |

The quadratic formula enables us to solve a second-degree equation like
y* — 2xy + 3x2> = 0 fory in terms of x. There is a formula for the three roots of a cubic
equation that is like the quadratic formula but much more complicated. If this formula is
used to solve the equation x> + y* = 9xy for y in terms of x, then three functions deter-
mined by the equation are

3 [ 6 3 [ 6
_ — 3_Xx X 3 X X 3
y=f(x)= \/ > t\/3 27x° + \/ > 4 27x
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and

y = % [—f(x) + V-3 <\3/_x23 + . ,xz(’ - 27x3 — \3/—);3 -, /%6 — 27x3>}.

Using implicit differentiation in Example 4 was much simpler than calculating dy/dx di-
rectly from any of the above formulas. Finding slopes on curves defined by higher-degree
equations usually requires implicit differentiation.

Derivatives of Higher Order

Implicit differentiation can also be used to find higher derivatives. Here is an example.

EXAMPLE 5  Finding a Second Derivative Implicitly
Find d%y/dx* if 2x* — 3y* = 8.

Solution  To start, we differentiate both sides of the equation with respect to x in order to
find y' = dy/dx.

d (53 _32) = 4
dx (Zx 3y ) dx (8)
6x% — 6y’ =0 Treat y as a function of x.
XX =y' =0
x2
v = B wheny # 0 Solve for y'.

We now apply the Quotient Rule to find y".
” d (x2> _ 2xy — sz” _ 2 x>,

Tdx \V 32 v
Finally, we substitute ' = x?/y to express y” in terms of x and y.
b2 a2 2 ot
V=5 2\ =5 = wheny # 0 ]

Rational Powers of Differentiable Functions
We know that the rule

d n n—1
X = nx
dx

holds when 7 is an integer. Using implicit differentiation we can show that it holds when n
is any rational number.

THEOREM 4 Power Rule for Rational Powers

If p/q is a rational number, then xP/ s differentiable at every interior point of the
domain of /97! and

d rla — P -1
L =g .
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EXAMPLE 6  Using the Rational Power Rule

diapy_ 1 —1p_ 1
(a) dx(x )—zx =G forx > 0
(b) d%(xm) = %x*m forx # 0
() d%;(x_‘%) = —%x_m forx # 0 [

Proof of Theorem 4 Let p and ¢ be integers with ¢ > 0 and suppose that y = /P =
xP/7. Then

4 = xP.

Since p and g are integers (for which we already have the Power Rule), and assuming that
y is a differentiable function of x, we can differentiate both sides of the equation with re-
spect to x and get

d
qy"“d% = p

If y # 0, we can divide both sides of the equation by gy?~! to solve for dy/dx, obtaining

dy pxP!
d gyt

xP!

- — , = yPl4
(xPlaya=1 S

xP~!

p _p
xPPla gla-D=pr-7g

- x(P=D=(p=p/9) A law of exponents

QT Rt Rt QI

cxp/a-1
which proves the rule. [

We will drop the assumption of differentiability used in the proof of Theorem 4 in
Chapter 7, where we prove the Power Rule for any nonzero real exponent. (See Section
7.3)

By combining the result of Theorem 4 with the Chain Rule, we get an extension of the
Power Chain Rule to rational powers of u: If p/q is a rational number and u is a differen-
tiable function of x, then u”/? is a differentiable function of x and

A plg — P (plg-1dU
T g dx’
provided that u # 0if (p/q) < 1. This restriction is necessary because 0 might be in the

domain of 1”/? but not in the domain of u?/9~!  as we see in the next example.
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EXAMPLE 7  Using the Rational Power and Chain Rules

function defined on [—1, 1]
(a) i(l — ) = T(1 = ¥ ¥2)  power Chain Rule with u = 1 —
dx 4 ower Chain Rule with u = X
_ —X
2(1 — X2

—_—

derivative defined only on (—1, 1)

d s L —6/5 d_
(b) i (cos x) =3 (cosx) I (cos x)
= —%(cos x)7%% (—sinx)

= %(sin x)(cos x)"% m
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Implicit Differentiation

Derivatives of Rational Powers

Find dy/dx in Exercises 1-10.

Find dr/d6 in Exercises 33-36.

y = x5
y=Vsx
y=-"2Vx-—-1
y=(1 - 6x)*3

y=x(x>+1)772

33,02+ 112 =1

35. sin(r0) = %

4. r— 2V = %(92/3 + %03/4

36. cosr + coth = ro

Second Derivatives
In Exercises 37-42, use implicit differentiation to find dy/dx and then

d?y/dx?®.

r= Vo3

z = cos[(1 — 61)%7]
gx) =22xV2+ 1)1
k0) = (sin (6 + 5))%/*

1. y = x4 2.

3.y =V 4.

5.9y=7Vx+6 6.

7.y = (2x + 5)7\7? 8.

9. y=x(x>+ 1) 10.
Find the first derivatives of the functions in Exercises 11-18.
1. s = V¢ 12.

13. y = sin[(2¢ + 5)23] 14.

15. f(x) = V1 — Vx 16.

17. h(0) = V1 + cos (26) 18.

Differentiating Implicitly
Use implicit differentiation to find dy/dx in Exercises 19-32.

37. x2+ 32 =1
39. y2 =x%+ 2x
4. 2Vy=x—y

43. If x> + y3 = 16, find the value of d%y/dx? at the point (2, 2).
1, find the value of d?y/dx at the point (0, —1).

44. Ifxy + y?

38. X+ y =1
40. y? —2x=1-2y
2. 0 +y2=1

19.
21.
23.

25. y

27.
29.

31.

¥y +x?2=6
2xy+y2=x+y
x = P =22 = )7
2=x_1

x+ 1

x = tany

x + tan(xy) = 0

. (1
ysin (f) =1—-xy

20.
22.
24.

26.

x>+ 3= 18y
x3—xy+y3=1

Bxy + 7)* = 6y

2 XY
* x+y
. xy = cot(xy)

. x + siny = xy

. y%cos <%> =2x+ 2

Slopes, Tangents, and Normals

In Exercises 45 and 46, find the slope of the curve at the given points.

45. y? + x> =yp*—2x at (—2,1)and(-2,—1)
46. (x> + 2?2 =(x—y)* at (1,0)and(1,—1)

In Exercises 47-56, verify that the given point is on the curve and find
the lines that are (a) tangent and (b) normal to the curve at the given

point.
7. 2+ xy— =1, (2,3)
48. x* + > =125 (3,-4)

49. x3? =9, (—1,3)

& & & &
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Exercise

50.
51.
52.
53.
54.
5S.
56.

y:2=2x—4y—1=0, (-2,1)
6x> + 3xy + 292+ 17y — 6 = 0,

x2 - \/gxy + 2y =3, (\/5,2)

(=1,0)

2xy + wsiny = 2w, (l,7/2)
xsin2y = ycos2x, (w/4, 7/2)
y = 2sin(mx —y), (1,0)
xZcos’y —siny =0, (0,7)

57.

58.

Parallel tangents Find the two points where the curve
x2 + xy + y? = 7 crosses the x-axis, and show that the tangents
to the curve at these points are parallel. What is the common
slope of these tangents?

Tangents parallel to the coordinate axes Find points on the
curve x> + xy + y? = 7 (a) where the tangent is parallel to the
x-axis and (b) where the tangent is parallel to the y-axis. In the
latter case, dy/dx is not defined, but dx/dy is. What value does
dx/dy have at these points?

Exercise

59.

The eight curve Find the slopes of the curve y* = y2 — x? at
the two points shown here.

y

ol
W
~—

B I—
—

-1

60.

The cissoid of Diocles (from about 200 B.c.) Find equations for
the tangent and normal to the cissoid of Diocles y%(2 — x) = x°
at (1, 1).

Y2 -0 =2

b a1

61. The devil’s curve (Gabriel Cramer [the Cramer of Cramer’s
rule], 1750) Find the slopes of the devil’s curve y* — 4y? =
x* — 9x? at the four indicated points.

y y4—4y2=x4—9x2

2 3,2)

5 (3.-2)

62. The folium of Descartes (See Figure 3.38)

a. Find the slope of the folium of Descartes, x> + y> — 9xy = 0
at the points (4, 2) and (2, 4).

b. At what point other than the origin does the folium have a
horizontal tangent?

c¢. Find the coordinates of the point A4 in Figure 3.38, where the
folium has a vertical tangent.

Implicitly Defined Parametrizations

Assuming that the equations in Exercises 63—66 define x and y implic-
itly as differentiable functions x = f(¢),y = g(¢), find the slope of
the curve x = f(7),y = g(¢) at the given value of z.

63. X2 —2x+2t2=4, 3 —32=4, (=2

64. x=V5—-Vi yit—1)=Vi t=4

65. x +2x2 =2+ yWir+1+2Vy=4, t=0

66. xsint + 2x = ¢,

tsint —2t=y, t=m

Theory and Examples

67. Which of the following could be true if f”(x) = x~'/3?
_3 a5 _ _9 s
a. f(x) 2% 3 b. f(x) 0" 7
m _ 1 —4/3 ’ _ 3 2/3
c.f(x)——gx d.f(x)—zx +6

68. Is there anything special about the tangents to the curves y> = x> and
2x2 + 3y% = 5atthepoints (1, =1)? Give reasons for your answer.

232 +3y>=5

/ x
0
\ (1,-1)
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69. Intersecting normal The line that is normal to the curve
x2 + 2xy — 3y2 = 0 at (1, 1) intersects the curve at what other
point?

70. Normals parallel to a line Find the normals to the curve
xy + 2x — y = 0 that are parallel to the line 2x + y = 0.

71. Normals to a parabola Show that if it is possible to draw three
normals from the point (a, 0) to the parabola x = y? shown here,
then a must be greater than 1/2. One of the normals is the x-axis.
For what value of a are the other two normals perpendicular?

0 (a, 0)

72. What is the geometry behind the restrictions on the domains of
the derivatives in Example 6(b) and Example 7(a)?

In Exercises 73 and 74, find both dy/dx (treating y as a differentiable

function of x) and dx/dy (treating x as a differentiable function of ).
How do dy/dx and dx/dy seem to be related? Explain the relationship
geometrically in terms of the graphs.

73. 03 +xy =6 74. x> + y? = sin’y

COMPUTER EXPLORATIONS

75. a. Given that x* + 4y = 1, find dy/dx two ways: (1) by
solving for y and differentiating the resulting functions in
the usual way and (2) by implicit differentiation. Do you
get the same result each way?

b. Solve the equation x* + 4y? = 1 for y and graph the
resulting functions together to produce a complete graph of
the equation x* + 4y% = 1. Then add the graphs of the first
derivatives of these functions to your display. Could you have

3.6 Implicit Differentiation 213

predicted the general behavior of the derivative graphs from
looking at the graph of x* + 4y? = 1? Could you have
predicted the general behavior of the graph of x* + 4y? = 1
by looking at the derivative graphs? Give reasons for your
answers.

76. a. Given that (x — 2)? + y? = 4 find dy/dx two ways: (1) by
solving for y and differentiating the resulting functions with
respect to x and (2) by implicit differentiation. Do you get the
same result each way?

b. Solve the equation (x — 2)?> + y? = 4 for y and graph the
resulting functions together to produce a complete graph
of the equation (x — 2)? + y? = 4. Then add the graphs
of the functions’ first derivatives to your picture. Could
you have predicted the general behavior of the derivative
graphs from looking at the graph of (x — 2)? + y? = 42
Could you have predicted the general behavior of the graph
of (x — 2)> + y* = 4 by looking at the derivative graphs?
Give reasons for your answers.

Use a CAS to perform the following steps in Exercises 77-84.

a. Plot the equation with the implicit plotter of a CAS. Check to
see that the given point P satisfies the equation.

b. Using implicit differentiation, find a formula for the
derivative dy/dx and evaluate it at the given point P.

¢. Use the slope found in part (b) to find an equation for the
tangent line to the curve at P. Then plot the implicit curve and
tangent line together on a single graph.

77. x> —xy+ > =7, P2,1)
78. x5+ v+ x? + y* =4, P(1,1)

79. y2 4+ y = P(0, 1)

1 —x’
80. y° + cosxy = x% P(1,0)

y ™
81. x + tan (}) =2, P(l,z)

82. x° + tan(x +y) = 1, P(%,O)

83. 207 + ()P =x*+2, P(1,1)
84. x\V1 +2y +y=1x% P(1,0)
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3 7 Related Rates

In this section we look at problems that ask for the rate at which some variable changes. In
each case the rate is a derivative that has to be computed from the rate at which some other
variable (or perhaps several variables) is known to change. To find it, we write an equation
that relates the variables involved and differentiate it to get an equation that relates the rate
we seek to the rates we know. The problem of finding a rate you cannot measure easily
from some other rates that you can is called a related rates problem.
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4V _ 3000 L/min

dt
FIGURE 3.42 The rate of change of fluid
volume in a cylindrical tank is related to

the rate of change of fluid level in the tank
(Example 1).

Related Rates Equations

Suppose we are pumping air into a spherical balloon. Both the volume and radius of the
balloon are increasing over time. If V' is the volume and r is the radius of the balloon at an
instant of time, then

4 3
Vv 37
Using the Chain Rule, we differentiate to find the related rates equation
av _dvdr _, odr
dt  drdt dt

So if we know the radius r of the balloon and the rate dV/dt at which the volume is in-
creasing at a given instant of time, then we can solve this last equation for dr/dt to find
how fast the radius is increasing at that instant. Note that it is easier to measure directly the
rate of increase of the volume than it is to measure the increase in the radius. The related
rates equation allows us to calculate dr/dt from dV/dt.

Very often the key to relating the variables in a related rates problem is drawing a picture
that shows the geometric relations between them, as illustrated in the following example.

EXAMPLE 1 Pumping Out a Tank

How rapidly will the fluid level inside a vertical cylindrical tank drop if we pump the fluid
out at the rate of 3000 L/min? Video

Solution ~ We draw a picture of a partially filled vertical cylindrical tank, calling its ra-
dius 7 and the height of the fluid /# (Figure 3.42). Call the volume of the fluid ¥/
As time passes, the radius remains constant, but /" and 4 change. We think of V and &
as differentiable functions of time and use 7 to represent time. We are told that
dv We pump out at the rate of

E = —3000. 3000 L/min. The rate is negative
because the volume is decreasing.

We are asked to find

dh
dr’

How fast will the fluid level drop?

To find dh/dt, we first write an equation that relates /4 to ¥ The equation depends on
the units chosen for V, r, and 4. With V in liters and » and /4 in meters, the appropriate
equation for the cylinder’s volume is

V = 10007k

because a cubic meter contains 1000 L.
Since V and / are differentiable functions of ¢, we can differentiate both sides of the
equation ¥ = 100077k with respect to # to get an equation that relates dh/dt to dV/dt:
av

dh
= 10007Tr2 — . risaconstant.

dt dt
We substitute the known value dV/dt = —3000 and solve for dh/dt:
dh _ —3000 _ 3

dt 100072 mr?
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Video

Balloon@
i

9 _ 0.14 rad/min
dt
when 0 = /4 dy _,
dr
when 6 = 7/4
Range
finder 500 ft

FIGURE 3.43 The rate of change of the
balloon’s height is related to the rate of
change of the angle the range finder makes
with the ground (Example 2).
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The fluid level will drop at the rate of 3/(772) m/min.

The equation dh/dt = —3/mr? shows how the rate at which the fluid level drops de-
pends on the tank’s radius. If 7 is small, dh/dt will be large; if r is large, dh/dt will be
small.

dh 3 . .
Ifr=1m: 7 —0.95 m/min = —95 cm/min.
1r=10m 9 - 3 < 00095 m/min = —0.95 cm/min n
' dt 1007 ’ ' ’

Related Rates Problem Strategy

1. Draw a picture and name the variables and constants. Use t for time. Assume
that all variables are differentiable functions of 7.

2. Write down the numerical information (in terms of the symbols you have
chosen).

3. Write down what you are asked to find (usually a rate, expressed as a derivative).

4. Write an equation that relates the variables. You may have to combine two or
more equations to get a single equation that relates the variable whose rate
you want to the variables whose rates you know.

5. Differentiate with respect to t. Then express the rate you want in terms of the
rate and variables whose values you know.

6. Evaluate. Use known values to find the unknown rate.

EXAMPLE 2

A hot air balloon rising straight up from a level field is tracked by a range finder 500 ft
from the liftoff point. At the moment the range finder’s elevation angle is /4, the angle is
increasing at the rate of 0.14 rad/min. How fast is the balloon rising at that moment?

A Rising Balloon

Solution ~ We answer the question in six steps.

1. Draw a picture and name the variables and constants (Figure 3.43). The variables in
the picture are

0 = the angle in radians the range finder makes with the ground.
y = the height in feet of the balloon.

We let ¢ represent time in minutes and assume that 6 and y are differentiable functions of 7.
The one constant in the picture is the distance from the range finder to the liftoff point
(500 ft). There is no need to give it a special symbol.

2. Write down the additional numerical information.

do

dt

P

when 4

= 0.14 rad/min

3. Write down what we are to find. We want dy/dt when 6 = /4.
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Situation when
x=038,y=0.6

ds _
=20

FIGURE 3.44 The speed of the car is
related to the speed of the police cruiser
and the rate of change of the distance
between them (Example 3).

4. Write an equation that relates the variables y and 6.

= tan 6 or y = 500 tan 6

i

500

5. Differentiate with respect to t using the Chain Rule. The result tells how dy/dt (which
we want) is related to df/dt (which we know).

dy 2 o 46
F7i 500 (sec” 0) 7

6. Evaluate with 8 = /4 and d6/dt = 0.14 to find dy/dt.

dy 5 -
- = 500(V2)%(0.14) = 140 we” ~ V2
At the moment in question, the balloon is rising at the rate of 140 ft/min. ™

EXAMPLE 3

-

A police cruiser, approaching a right-angled intersection from the north, is chasing a F =
speeding car that has turned the corner and is now moving straight east. When the cruiser Animatiol
is 0.6 mi north of the intersection and the car is 0.8 mi to the east, the police determine
with radar that the distance between them and the car is increasing at 20 mph. If the cruiser
is moving at 60 mph at the instant of measurement, what is the speed of the car? Iia

Video
Solution ~ We picture the car and cruiser in the coordinate plane, using the positive x-axis
as the eastbound highway and the positive y-axis as the southbound highway (Figure 3.44).
We let ¢ represent time and set

A Highway Chase

—_—

x = position of car at time ¢
y = position of cruiser at time ¢
s = distance between car and cruiser at time ¢.

We assume that x, y, and s are differentiable functions of 7.
We want to find dx/dt when

d
y=06mi, = =-60mph, % =20mph.

x = 0.8 mi, p7 i

Note that dy/dt is negative because y is decreasing.
We differentiate the distance equation
s2 = x? 4 2
(we could also use s = \/xZTyz), and obtain
ds dx dy

ZSEZ 2x dt + ZyE
ds _ 1 ( dx 4
a S\ ar TV ar

I S V.
‘/x2+y2 da V)
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Video

wheny = 6 ft

FIGURE 3.45 The geometry of the
conical tank and the rate at which water
fills the tank determine how fast the water
level rises (Example 4).
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Finally, use x = 0.8,y = 0.6, dy/dt = —60, ds/dt = 20, and solve for dx/dt.
1

dx
20 = 0.8% + (0.6)(—60
V(0.8) + (0.6) ( di " (06)( ))
de  20V(0.8)* + (0.6)° + (0.6)(60)
0.8 -

dt

70

At the moment in question, the car’s speed is 70 mph. [

EXAMPLE 4

Water runs into a conical tank at the rate of 9 ft*/min. The tank stands point down and has
a height of 10 ft and a base radius of 5 ft. How fast is the water level rising when the water
is 6 ft deep?

Filling a Conical Tank

Solution  Figure 3.45 shows a partially filled conical tank. The variables in the problem are

V = volume (ft) of the water in the tank at time 7 (min)

x = radius (ft) of the surface of the water at time ¢

¥

We assume that ¥, x, and y are differentiable functions of 7. The constants are the dimen-
sions of the tank. We are asked for dy/dr when

depth (ft) of water in tank at time ¢.

y=6ft and % = 9 ft*/min.

The water forms a cone with volume

V= %szy.
This equation involves x as well as V" and y. Because no information is given about x and
dx/dt at the time in question, we need to eliminate x. The similar triangles in Figure 3.45

give us a way to express x in terms of y:

o or x=%

Yy 10 2°
Therefore,

2
_ 1 (XY, -7 s

r 3”<2>y_12y
to give the derivative

AV _m oW _m D

e~ 127 @ T4 ar

Finally, use y = 6 and dV/dt = 9 to solve for dy/dt.

dy
=T ()22
9= 360
dy 1
At the moment in question, the water level is rising at about 0.32 ft/min. [
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EXERCISES 3.7

. Area Suppose that the radius 7 and area 4 = 72 of a circle are
differentiable functions of #. Write an equation that relates d4/dt
to dr/dt.

. Surface area Suppose that the radius » and surface area
S = 4arr? of a sphere are differentiable functions of #. Write an
equation that relates dS/dt to dr/dt.

. Volume The radius » and height /4 of a right circular cylinder are
related to the cylinder’s volume ¥ by the formula V = 7r?h.

a. How is dV/dt related to dh/dt if r is constant?
b. How is dV/dt related to dr/dt if h is constant?

c. How is dV/dt related to dr/dt and dh/dt if neither r nor 4 is
constant?

. Volume The radius » and height / of a right circular cone are re-
lated to the cone’s volume ¥ by the equation V = (1/3)mr?h.

a. How is dV/dt related to dh/dt if r is constant?
b. How is dV/dt related to dr/dt if h is constant?

c. How is dV/dt related to dr/dt and dh/dt if neither r nor 4 is
constant?

. Changing voltage The voltage V' (volts), current / (amperes),
and resistance R (ohms) of an electric circuit like the one shown
here are related by the equation ' = IR. Suppose that V' is in-
creasing at the rate of 1 volt/sec while 7 is decreasing at the rate
of 1/3 amp/sec. Let ¢ denote time in seconds.

LV_

R

What is the value of dV/dt?
What is the value of dI/dt?
. What equation relates dR/dt to dV/dt and dl/dt?

Find the rate at which R is changing when /' = 12 volts and
1 = 2 amp. Is R increasing, or decreasing?

g e T

. Electrical power The power P (watts) of an electric circuit is

related to the circuit’s resistance R (ohms) and current / (amperes)

by the equation P = RI?.

a. How are dP/dt, dR/dt, and di/dt related if none of P, R, and /
are constant?

b. How is dR/dt related to di/dt if P is constant?

. Distance Let x and y be differentiable functions of 7 and let
s = Vx? + y? be the distance between the points (x, 0) and
(0, y) in the xy-plane.

a. How is ds/dt related to dx/dt if y is constant?

8.

10.

b. How is ds/dt related to dx/dt and dy/dt if neither x nor y is
constant?

c. How is dx/dt related to dy/dt if s is constant?

Diagonals Ifx, y, and z are lengths of the edges of a rectangular
box, the common length of the box’s diagonals is s =

VaxZ + y? + 22,

a. Assuming that x, y, and z are differentiable functions of 7, how
is ds/dt related to dx/dt, dy/dt, and dz/dt?

b. How is ds/dt related to dy/dt and dz/dt if x is constant?

c. How are dx/dt, dy/dt, and dz/dt related if s is constant?

. Area The area 4 of a triangle with sides of lengths ¢ and b en-

closing an angle of measure 6 is

1
A= 2absmﬂ.

a. How is dA/dt related to d6/dt if a and b are constant?

b. How is d4/dt related to df/dt and da/dt if only b is constant?

c. How is dA4/dt related to d6)/dt, da/dt, and db/dt if none of a,
b, and 6 are constant?

Heating a plate When a circular plate of metal is heated in an
oven, its radius increases at the rate of 0.01 cm/min. At what rate
is the plate’s area increasing when the radius is 50 cm?

11.

Changing dimensions in a rectangle The length / of a rectan-
gle is decreasing at the rate of 2 cm/sec while the width w is in-
creasing at the rate of 2 cm/sec. When/ = 12 cmand w = 5 cm,
find the rates of change of (a) the area, (b) the perimeter, and (c)
the lengths of the diagonals of the rectangle. Which of these
quantities are decreasing, and which are increasing?

12.

13.

Changing dimensions in a rectangular box Suppose that the
edge lengths x, y, and z of a closed rectangular box are changing
at the following rates:

dx
dt

d _ 1 m/sec.

=1 dy_ 2
= 1 m/sec, = m/sec, i

dt

Find the rates at which the box’s (a) volume, (b) surface area, and

(¢) diagonal length s = Vx? + y? + 22 are changing at the in-

stant whenx = 4,y = 3,andz = 2.

A sliding ladder A 13-ft ladder is leaning against a house when

its base starts to slide away. By the time the base is 12 ft from the

house, the base is moving at the rate of 5 ft/sec.

a. How fast is the top of the ladder sliding down the wall then?

b. At what rate is the area of the triangle formed by the ladder,
wall, and ground changing then?

c. At what rate is the angle 6 between the ladder and the ground
changing then?
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14.

(0

13-ft ladder

| 6

0 x(1)

Commercial air traffic Two commercial airplanes are flying at
40,000 ft along straight-line courses that intersect at right angles.
Plane A is approaching the intersection point at a speed of 442
knots (nautical miles per hour; a nautical mile is 2000 yd). Plane
B is approaching the intersection at 481 knots. At what rate is the
distance between the planes changing when 4 is 5 nautical miles
from the intersection point and B is 12 nautical miles from the in-
tersection point?

20.
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a. At what rate is the water level changing when the water is 8 m
deep?
b. What is the radius r of the water’s surface when the water is
y m deep?
c. At what rate is the radius » changing when the water is 8 m
deep?
A growing raindrop Suppose that a drop of mist is a perfect
sphere and that, through condensation, the drop picks up moisture
at a rate proportional to its surface area. Show that under these
circumstances the drop’s radius increases at a constant rate.

21.

The radius of an inflating balloon A spherical balloon is in-
flated with helium at the rate of 1007 ft’/min. How fast is the
balloon’s radius increasing at the instant the radius is 5 ft? How
fast is the surface area increasing?

15.

Flying a kite A girl flies a kite at a height of 300 ft, the wind car-
rying the kite horizontally away from her at a rate of 25 ft/sec. How
fast must she let out the string when the kite is 500 ft away from her?

16.

Boring a cylinder The mechanics at Lincoln Automotive are
reboring a 6-in.-deep cylinder to fit a new piston. The machine
they are using increases the cylinder’s radius one-thousandth of
an inch every 3 min. How rapidly is the cylinder volume increas-
ing when the bore (diameter) is 3.800 in.?

. A growing sand pile

Sand falls from a conveyor belt at the rate
of 10 m*/min onto the top of a conical pile. The height of the pile
is always three-eighths of the base diameter. How fast are the (a)
height and (b) radius changing when the pile is 4 m high? Answer
in centimeters per minute.

18.

19.

A draining conical reservoir Water is flowing at the rate of
50 m*/min from a shallow concrete conical reservoir (vertex
down) of base radius 45 m and height 6 m.

a. How fast (centimeters per minute) is the water level falling
when the water is 5 m deep?

b. How fast is the radius of the water’s surface changing then?
Answer in centimeters per minute.

A draining hemispherical reservoir Water is flowing at the rate
of 6 m3/min from a reservoir shaped like a hemispherical bowl of
radius 13 m, shown here in profile. Answer the following ques-
tions, given that the volume of water in a hemispherical bowl of ra-
dius Ris ¥ = (m/3)y*(3R — y) when the water is y meters deep.

Center of sphere

q
13

\ Water level u

22.

23.

Hauling in a dinghy A dinghy is pulled toward a dock by a
rope from the bow through a ring on the dock 6 ft above the bow.
The rope is hauled in at the rate of 2 ft/sec.

a. How fast is the boat approaching the dock when 10 ft of rope
are out?

b. At what rate is the angle 0 changing then (see the figure)?

Ring at edge
of dock [}

A balloon and a bicycle A balloon is rising vertically above a
level, straight road at a constant rate of 1 ft/sec. Just when the
balloon is 65 ft above the ground, a bicycle moving at a constant
rate of 17 ft/sec passes under it. How fast is the distance s(¢) be-
tween the bicycle and balloon increasing 3 sec later?

y

y(1)

s(7)

SO
2
=

x(1)
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24. Making coffee Coffee is draining from a conical filter into a
cylindrical coffeepot at the rate of 10 in/min.

a. How fast is the level in the pot rising when the coffee in the
cone is 5 in. deep?

b. How fast is the level in the cone falling then?

How fast
is this
level falling?

How fast
is this
level rising?

25. Cardiac output In the late 1860s, Adolf Fick, a professor of
physiology in the Faculty of Medicine in Wiirzberg, Germany, de-
veloped one of the methods we use today for measuring how
much blood your heart pumps in a minute. Your cardiac output as
you read this sentence is probably about 7 L/min. At rest it is
likely to be a bit under 6 L/min. If you are a trained marathon
runner running a marathon, your cardiac output can be as high as

30 L/min.
Your cardiac output can be calculated with the formula
_9
Y=

where Q is the number of milliliters of CO, you exhale in a
minute and D is the difference between the CO, concentration
(ml/L) in the blood pumped to the lungs and the CO, concentra-
tion in the blood returning from the lungs. With O = 233 ml/min
and D = 97 — 56 = 41 ml/L,
233 ml/min .
Y= ml/L ~ 5.68 L/min,
fairly close to the 6 L/min that most people have at basal (resting)
conditions. (Data courtesy of J. Kenneth Herd, M.D., Quillan Col-
lege of Medicine, East Tennessee State University.)
Suppose that when Q = 233 and D = 41, we also know
that D is decreasing at the rate of 2 units a minute but that Q re-
mains unchanged. What is happening to the cardiac output?

26.

Cost, revenue, and profit A company can manufacture x items
at a cost of ¢(x) thousand dollars, a sales revenue of 7(x) thousand
dollars, and a profit of p(x) = r(x) — c(x) thousand dollars.
Find dc/dt, dr/dt, and dp/dt for the following values of x and
dx/dt.
a. r(x) = 9x,
whenx = 2
b. r(x) = 70x, c(x)=x>—6x>+45/x, and dx/dt=0.05
whenx = 1.5

c(x) = x> — 6x> + 15x, and dx/dt = 0.1

27.

Moving along a parabola A particle moves along the parabola
y = x? in the first quadrant in such a way that its x-coordinate
(measured in meters) increases at a steady 10 m/sec. How fast is
the angle of inclination 6 of the line joining the particle to the ori-
gin changing when x = 3 m?

Exercise

28.

Moving along another parabola A particle moves from right to
left along the parabolic curve y = V/—x in such a way that its
x-coordinate (measured in meters) decreases at the rate of 8 m/sec.
How fast is the angle of inclination 6 of the line joining the parti-
cle to the origin changing when x = —47?

29.

Motion in the plane The coordinates of a particle in the metric
xy-plane are differentiable functions of time ¢ with dx/dt =
—1 m/sec and dy/dt = —5 m/sec. How fast is the particle’s dis-
tance from the origin changing as it passes through the point
(5,12)?

Exercise

30.

31.

32.

A moving shadow A man 6 ft tall walks at the rate of 5 ft/sec
toward a streetlight that is 16 ft above the ground. At what rate is
the tip of his shadow moving? At what rate is the length of his
shadow changing when he is 10 ft from the base of the light?

Another moving shadow A light shines from the top of a pole
50 ft high. A ball is dropped from the same height from a point 30
ft away from the light. (See accompanying figure.) How fast is the
shadow of the ball moving along the ground 1/2 sec later? (As-
sume the ball falls a distance s = 16¢> ft in ¢ sec.)

Light

»Ball at time t = 0

1/2 sec later

50-ft
pole

g Shadow
) <

0 30 x(1)

NOT TO SCALE

Videotaping a moving car You are videotaping a race from a
stand 132 ft from the track, following a car that is moving at 180
mi/h (264 ft/sec). How fast will your camera angle 6 be changing
when the car is right in front of you? A half second later?
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Camera

Car

33.

A melting ice layer A spherical iron ball 8 in. in diameter is
coated with a layer of ice of uniform thickness. If the ice melts at
the rate of 10 in®/min, how fast is the thickness of the ice de-
creasing when it is 2 in. thick? How fast is the outer surface area
of ice decreasing?

34.

35.

Highway patrol A highway patrol plane flies 3 mi above a level,
straight road at a steady 120 mi/h. The pilot sees an oncoming car
and with radar determines that at the instant the line-of-sight dis-
tance from plane to car is 5 mi, the line-of-sight distance is decreas-
ing at the rate of 160 mi/h. Find the car’s speed along the highway.

A building’s shadow On a morning of a day when the sun will
pass directly overhead, the shadow of an 80-ft building on level
ground is 60 ft long. At the moment in question, the angle 6 the
sun makes with the ground is increasing at