

Dr. Mai Ramadan

Definition:

It is a method based on measurement of weight of an analyte or a compound containing the analyte. (Analysis by weighing)

Types:

Precipitation method

Volatilization method

Precipitation method:

The species to be determined is precipitated by a reagent that yields a sparingly soluble product (or a product of known composition, or a product that can be converted to one of known composition).

Examples:

Determination of barium is performed by precipitation using sulfate as precipitating agent. The precipitate is BaSO₄ which remains after ignition up to 800 °C as BaSO₄

$$Ba^{+2} + SO_4^{-2} \xrightarrow{} BaSO_4.XH_2O \xrightarrow{800 \circ C} BaSO_4$$

Examples:

Ca⁺² in water is determined by precipitating with oxalate. The formed Ca oxalate undergoes decomposition during ignition. The weighed substance at the end of process is then CaO.

Precipitation method

Examples:

To precipitate phosphate Mg⁺²/NH₃ buffer is added

$$\begin{array}{cccc} PO_{4}^{-3}+ \ Mg^{+2}+NH_{4}^{+} & \longrightarrow \ MgNH_{4}PO_{4}.XH_{2}O & \underline{900\ ^{\circ}C} & Mg_{2}P_{2}O_{7} \\ & & & & & \\ & & & \\ & & & & \\$$

Precipitation method

Precipitating form

Weighing form

Volatilization method:

The analyte (or its decomposition products) are volatilized at a suitable temperature. The volatilized species are collected and weighed directly or weighed by difference.

Example: NaHCO₃ + $H_2SO_4 \longrightarrow CO_2(g) + H_2O + NaHSO_4$

Wt $CO_2 = X_t - X_o$ Xt: wt of media after absorptionXo: original weight of media

Sample preparation Addition of precipitating solution Digestion Filtration Washing Drying or ignition **Cooling down in desiccator** Weighing _____ (constant weight) ____ Calculation

Sample preparation

The sample should be weighed, grounded and then dissolved. pH adjustment could be needed.

Addition of precipitating agent

This stage is critical for the precipitate, since it influences its physical properties.

Precipitating agent should be added hot, diluted, slowly and under stirring.

Digestion: the precipitate is allowed to stand in the

- presence of the mother liquor at elevated temp. or by room temp. and large particles grow at the expense of small ones.
- Digestion improves the purity and filtrability of both
- colloidal and crystalline ppt.
- This process includes the dissolution and recrystallization of small particles which results in bridging between particles to form a larger, easily filtrable one.

Filtration:

- separation of the precipitate from the mother liquor.
- Filtration should be accelarated using Buchner funnel.

The media employed for filtration are:

Filter paper:

- It has a very small ash content, retain the smallest particles
- of precipitate (Porosity) and permit rapid filtration.

Sintered-glass filtering crucible:

It is made of resistance glass and have a porous disc

(various porosity indicated from 0-5, see Tab.)

It should not be heated above 200°C.

Don,t use for strongly alkaline

Porosity	0	1	2	3	4	5
Pore diameter (µm)	200-250	100-120	40-50	20-30	5-10	1-2

Porcelain filtering crucible: porous filter base, can be

heated to higher temprature.

Washing:

to remove impurities adsorbed on the surface after filtration using destilled water for several times.

Drying and ignition

Drying:

removes the solvent(s) of the mother liquid from which the

precipitate was formed. For Temp. up to 250 °C a

thermostatically controlled electric oven is used.

Ignition:

converts the precipitate to a known composition called the *weighing form.* For higher Temp. a muffle furnace is used.

Drying/ignition behavior

Consider calcium oxalate Around 145 °C, calcium oxalate exists as CaC_2O_4 . H_2O . Around 225 °C, calcium oxalate exists as CaC_2O_4 . Around 500 °C, calcium oxalate exists is converted to $CaCO_3$. Above 900 °C, calcium carbonate is converted to CaO.

Ignition:

Figure 4-7 Effect of temperature on precipitate mass.

Cooling in desiccator:

The ppt should be put in desiccator after drying or ignition.

Weighing:

Using a digital calibrated balance. Drying process is

repeated until the weight is not more changed.

Calculation:

It will be discussed later.

Glass filtering crucible

Desiccator

Formation of precipitate

Two steps are involved in this process:

- **1.** *Nucleation*: Formation of the smallest precipitate particles in a supersaturated solution, which are capable of spontaneous growth.
- **2.** *Particle Growth*: Deposition of ions/molecules on the surface of the solid, nucleated particles.

To obtain particles with the best characters (large pure crystals) then form your precipitate slowly using warm, dilute solution with stirring then allow it to digest without stirring.

Dr. Mai Ramadan

Co-precipitation: is the precipitation of an otherwise soluble

substance along with the insoluble material.

Mechanisms of Co-precipitation

- 1. Surface adsorption
- 2. Inclusion (mixed crystal formation, Isomorphous)
- 3. Occlusion
- 4. Postprecipitation

Surface adsorption

it is a process in which a substance is held on the surface of a solid.

It can be removed by washing and digestion.

Inclusion (mixed crystal formation, Isomorphous)

Ions of the same charge and size are trapped within crystal lattice.

K⁺ replaces NH₄⁺ in MgNH₄PO₄, Sr⁺² in BaSO4 and Mn⁺² in CdS.

Occlusion

In this process material that is not part of crystal structure is trapped in a pocket of a rapidly growing precipitate .

Both occlusion and occlusion can not be improved by washing. Digestion and re-precipitation can remove such impurities.

Postprecipitation: CaC₂O₄ & Mg⁺²

The precipitate causes a localized high concentration of unwanted species, when the precipitate allowed to stand in contact with the mother liquor.

To avoid post-precipitation a rapid filtration and removal of undesired ions before the precipitation are required.

Colloidal particles : According to particle size $\geq 10^{-5}$ $10^{-5} - 10^{-7}$ $\leq 10^{-7}$ cmsuspensioncolloidsolutionColloidal particles do not settle out. Filtration is difficultdue to plugging of pores in the filter, or passing throughthe filter.

Colloid Coagulation ppt

Coagulation is accomplished by: Stirring, heating and by

adding of an electrolyte

Colloidal precipitate

For example: precipitation of Cl⁻ with an excess of AgNO₃

 $NO_{3}^{-} NO_{3}^{-} NO_{3}^{-} \} Counter-ion layer$ $Ag^{+} Ag^{+} Ag^{+} Ag^{+}$ $Ag^{+} Cl^{-} Ag^{+} Cl^{-} Ag^{+} Cl^{-}$ Brimary adsorptive layer Brimary adsorptive layer

Colloidal precipitate

Figure 4-4 The electric double layer of a colloid consists of a layer of charge adsorbed on the surface of the particle (the primary adsorption layer) and a layer of opposite charge (the counter-ion layer) in the solution surrounding the particle. Increasing the electrolyte concentration has the effect of decreasing the volume of the counter-ion layer, thereby increasing the chances for coagulation.

Precipitation from homogenous solution

It is a technique in which a precipitating agent is generated in a solution of the analyte by a slow chemical reaction.

The relative supersaturation is kept low.

The precipitating agent is formed homogenously and reacts immediatly with the analyte.

Precipitation from homogenous solution

Example: Urea for Fe (III) and AI (III)

$$NH_2CONH_2 + 3 H_2O \longrightarrow CO_2 + 2 NH_4^+ + 2 OH^-$$

 $Fe^{+3} + 3 OH^{-} \longrightarrow Fe(OH)_3$

Others: ethyl oxalate, trimethyl phosphate, dimethyl sulfate,

Thioacetamide (see table 5-3)

Precipitation from homogenous solution

Methods for Homogeneous Generation of Precipitating Agents					
Precipitating Agent	Reagent	Generation Reaction	Elements Precipitated		
OH-	Urea	$(NH_2)_2CO + 3H_2O \rightarrow CO_2 + 2NH_4^+ + 2OH^-$	Al, Ga, Th, Bi, Fe, Sn		
PO4 ³⁻	Trimethyl phosphate	$(CH_3O)_3PO + 3H_2O \rightarrow 3CH_3OH + H_3PO_4$	Zr, Hf		
C2O42-	Ethyl oxalate	$(C_2H_5)_2C_2O_4 + 2H_2O \rightarrow 2C_2H_5OH + H_2C_2O_4$	Mg, Zn, Ca		
SO4 ²⁻	Dimethyl sulfate	$(CH_3O)_2SO_2 + 4H_2O \rightarrow 2CH_3OH + SO_4^{2-} + 2H_3O^+$	Ba, Ca, Sr, Pb		
CO32-	Trichloroacetic acid	$Cl_3CCOOH + 2OH^- \rightarrow CHCl_3 + CO_3^{2-} + H_2O$	La, Ba, Ra		
H ₂ S	Thioacetamide*	$CH_3CSNH_2 + H_2O \rightarrow CH_3CONH_2 + H_2S$	Sb, Mo, Cu, Cd		
DMG†	Biacetyl + hydroxylamine	$CH_3COCOCH_3 + 2H_2NOH \rightarrow DMG + 2H_2O$	Ni		
HOQ‡	8-Acetoxyquinoline§	$CH_3COOQ + H_2O \rightarrow CH_3COOH + HOQ$	Al, U, Mg, Zn		

Some Inorganic Precipitating Agents				
Precipitating Agent	Element Precipitated*			
NH ₃ (aq)	Be (BeO), Al (Al ₂ O ₃), Sc (Sc ₂ O ₃), Cr (Cr ₂ O ₃) [†] , Fe (Fe ₂ O ₃), Ga (Ga ₂ O ₃), Zr (ZrO ₂), In (In ₂ O ₃), Sn (SnO ₂), U (U ₃ O ₈)			
H ₂ S	Cu (CuO) [†] , Zn (ZnO or ZnSO ₄), Ge (GeO ₂), As (As_2O_3 or As_2O_5), Mo (MoO ₃), Sn (SnO ₂) [†] , Sb (Sb ₂ O ₃), or Sb ₂ O ₅), Bi (Bi ₂ S ₃)			
(NH4)2S	Hg (HgS), Co (Co ₃ O ₄)			
(NH ₄) ₂ HPO ₄	Mg (Mg ₂ P ₂ O ₇), Al (AlPO ₄), Mn (Mn ₂ P ₂ O ₇), Zn (Zn ₂ P ₂ O ₇), Zr (Zr ₂ P ₂ O ₇), Cd (Cd ₂ P ₂ O ₇), Bi (BiPO ₄)			
H ₂ SO ₄	Li, Mn, Sr, Cd, Pb, Ba (all as sulfates)			
H ₂ PtCl ₆	K (K ₂ PtCl ₆ or Pt), Rb (Rb ₂ PtCl ₆), Cs (Cs ₂ PtCl ₆)			
H ₂ C ₂ O ₄	Ca (CaO), Sr (SrO), Th (ThO ₂)			
(NH ₄) ₂ MoO ₄	Cd (CdMoO ₄) [†] , Pb (PbMoO ₄)			

Inorganic precipitating agents

HCI	Ag (AgCl), Hg (Hg2Cl2), Na (as NaCl from butyl alcohol), Si (SiO2)
AgNO ₃	CI (AgCl), Br (AgBr), I(AgI)
(NH ₄) ₂ CO ₃	Bi (Bi ₂ O ₃)
NH ₄ SCN	Cu [Cu ₂ (SCN) ₂]
NaHCO3	Ru, Os, Ir (precipitated as hydrous oxides, reduced with H ₂ to
	metallic state)
HNO ₃	Sn (SnO ₂)
H ₅ IO ₆	$Hg [Hg_5(IO_6)_2]$
NaCl, Pb(NO3)2	F (PbClF)
BaCl ₂	SO_4^{2-} (BaSO ₄)
MgCl ₂ , NH ₄ Cl	$PO_4^{3-}(Mg_2P_2O_7)$

Organic precipitating agents

Chelating agent

8-hydroxyquinoline

Dimethylglyoxime

Salt formation

Sodium tetraphenylboron

Organic precipitating agents

Chelating agent 8-hydroxyquinoline: used for Mg⁺², Zn⁺², A⁺³I, Cd⁺², Cu⁺²,--

8-hydroxyquinolate complex

Organic precipitating agents

Chelating agent Dimethylglyoxime (DMG): for Ni⁺²

Salt formation:

Sodium tetraphenylboron NaB(C₆H₅)₄ : for K⁺, NH₄⁺, Cs⁺

$$NaB(C_6H_5)_4 + K^+ \longrightarrow KB(C_6H_5)_4 + Na^+$$

Gravimetry part 3

Dr. Mai Ramadan

Stoichiometry: the weight relationships among reacting chemical spieces

Mole: one mole of a chemical spiece is 6.022 * 10²³ atoms,

molecules, ions or ion pairs.

No. moles = Weight (g)/formula weight (g/mol)

No. millimoles = weight (mg)/formula weight (mg/mmol)

Treatment of a 0.400 g sample of impure potassium chloride with an excess of AgNO3 resulted in the formation of 0.7332 g AgCl. *Calculate the percentage of KCl in the sample*. (FW AgCl =143.42, KCl= 74.56)

AgNO3 + KCI
$$\longrightarrow$$
 AgCI₁ + KNO3

No. Mol AgCl = weight (g)/ MW (g/mol)

No. Mol AgCl = $0.7332 (g) / 143.42 (g/mol) = 5.112*10^{-3}$ mol

No. mol KCl = 1mol KCl – χ No. mol AgCl 1 mol AgCl No. mol KCl= 5.112*10⁻³ (mol) Wt of KCl = no.mol KCl * MW= $= 5.112*10^{-3}$ (mol) * 74.56 (g/mol) = 0.3812 (g) % KCl = Wt of KCl (g) X 100 = 95.3%Wt of sample (g)

You look for no mol. X??????? and no moles W is known

a & c are no moles of the unknown (X) and no moles of known (W) according to the balanced equation

```
What weight of BaCl_2.2H_2O (fw = 244.25) is needed to react
with 0.1503 g of:
AgNO<sub>3</sub> (fw = 169.9 g)? (AgCl, FW= 143.32)
MgSO<sub>4</sub>? (BaSO<sub>4</sub>)
H<sub>3</sub>PO<sub>4</sub>? (Ba<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>)
What is the weight of the resulting precipitate?
```

$$BaCl_2.2H_2O + 2 AgNO_3 \longrightarrow 2 AgCl_{\downarrow} + Ba^{+2} + 2 NO_3^{-} + 2 H_2O$$

No. mol BaCl₂.2H₂O = $1 \frac{\text{mol BaCl}_2.2H_2O}{2 \text{ mol AgNO3}} X$ No. mol AgNO3

No. mol BaCl₂.2H₂O = <u>1</u> X <u>0.1503 (g)</u> = 4.4232* 10⁻⁴ (mol) <u>2</u> 169.9 (g/mol)

Wt $BaCl_2.2H_2O = No. mol BaCl_2.2H_2O \chi MWt$ Wt $BaCl_2.2H_2O = 4.4232* 10^{-4} (mol) \chi 244.25 (g/mol) = 0.1080 (g)$ $BaCl_2.2H_2O + 2 AgNO_3 \longrightarrow 2 AgCl_{\downarrow} + Ba^{+2} + 2 NO_3^{-} + 2 H_2O$

No. mol AgCl produced = $2 \mod AgCl$ X No. mol AgNO3 2 mol AgNO3

No. mol AgCl =
$$\frac{2}{2}$$
 X $\frac{0.1503 (g)}{169.9 (g/mol)}$ = 8.8464* 10⁻⁴ (mol)

Wt AgCl = No. mol AgCl χ MWt Wt AgCl = 8.8464* 10⁻⁴ (mol) X 143.32 (g/mol) = 0.1268 (g)

Calculation

$$BaCl_2.2H_2O + MgSO_4 \longrightarrow BaSO_4 + Mg^{+2} + 2 Cl^{-} + 2 H_2O$$

$$3 \operatorname{BaCl}_2.2H_2O + 2H_3PO_4 \longrightarrow \operatorname{Ba}_3(PO_4)_2 + 6 \operatorname{HCl} + 6 H_2O$$

The mercury in a 0.7152 g sample was precipitated with an excess of paraperiodic acid H_5IO_6 $5 Hg^{+2} + 2 H_5IO_6 \longrightarrow Hg_5(IO_6)_2 (S) + 10 H^+$ The precipitate was filtered, washed free of precipitating agent, dried and found to weigh 0.3408 g. *Calculate the percentage of Hg_2Cl_2 in the sample* (FW Hg_5(IO_6)_2 = 1448.76, Hg_2Cl_2 = 472.09)

Calculation

No. Mol Hg⁺² =
$$\frac{5 \text{ mol Hg}^{+2}}{1 \text{ mol Hg}_5(IO_6)_2}$$
 X No. mol Hg₅(IO₆)₂
No. Mol Hg⁺² = $\frac{5}{1}$ X $\frac{0.3408 \text{ (g)}}{1448.76 \text{ (g/mol)}}$ = 1.176*10⁻³ (mol)

$$Hg_2Cl_2 \longrightarrow 2Hg^+ + 2Cl^-$$

No. Mol $Hg_2Cl_2 = \frac{1 \mod Hg_2Cl_2}{2 \mod Hg^{+2}} X$ no. mol $Hg^{+2} = 5.881 \times 10^{-4}$ (mol) 2 mol Hg^{+2}

Calculation

Wt $Hg_2Cl_2 = No. Mol Hg_2Cl_2 X MWt$

Wt $Hg_2Cl_2 = 5.881*10^{-4}$ (mol) X 472.09 (g/mol) = 0.2777 (g)

$$% Hg_2Cl_2 = \frac{Wt \text{ of } Hg_2Cl_2(g)}{Wt \text{ of sample (g)}} X 100 =$$

% $Hg_2Cl_2 = 38.83\%$

Gravimetry part 4

Dr. Mai Ramadan

A 0.3516 g sample of a commercial phosphate detergents was ignited at red heat to destroy the organic matter. The residue was then taken up in hot HCl, which converts the P to H₃PO₄. The phosphate was precipitated as $MgNH_4PO_4.6H_2O$ by addition of Mg^{+2} followed by aq. NH_3 After being filtered and washed, the precipitate was ignited at 1000 °C (what is the weighing form). The residue weighed 0.2161 g. *Calculate the percent P in the sample* (FW $Mg_2P_2O_7 = 222.57$, P= 30.974)

Calculation

The weighing form is $Mg_2P_2O_7$ MWt of $Mg_2P_2O_7 = 222.57$ (g/mol) No. Mol P = $2 \mod P$ X No. mol $Mg_2P_2O_7$ $1 \mod Mg_2P_2O_7$

No. Mol P =
$$\frac{2 \text{ mol P}}{1 \text{ mol Mg}_2 P_2 O_7} X = \frac{0.2161 \text{ (g)}}{222.57 \text{ (g/mol)}} = 1.9419*10^{-3} \text{ (mol)}$$

Wt P = No.mol P X MWt = = 1.9419*10⁻³ (mol) X 30.974 (g/mol) = 0.060 (g)

The source of phosphor in the final ppt Mg₂P₂O₇

% P in sample =
$$\frac{\text{Wt of P (g)}}{\text{Wt of sample (g)}}$$
 X 100 =
% P in sample = $\frac{0.060 \text{ (g)}}{0.3516 \text{ (g)}}$ X 100 = 17.11%

An iron ore was analyzed by dissolving a 1.1324-g sample in concentrated HCl. The resulting solution was diluted with water, and the iron(III) was precipitated as the hydrous oxide $Fe_2O_3 \cdot xH_2O$ by the addition of NH_3 . After filtration and washing, the residue was ignited at a high temperature to give 0.5394 g of pure Fe_3O_3 (159.69 g/mol). Calculate (a) the % Fe (55.847 g/mol) and (b) the % Fe_3O_4 (231.54 g/mol) in the sample.

Solution FW of $Fe_2O_3 = (159.69 \text{ g/mol})$, AW of Fe = (55.847 g/mol)

No. moles $Fe_2O_3 = Wt / FW$ of $Fe_2O_3 = 3.3778*10^{-3}$ mol Fe_2O_3

 $Fe_2O_3 \longrightarrow 2Fe$

No moles Fe = 2 mol Fe * mol Fe₂O₃ = $6.7556*10^{-3}$ mol 1 mol Fe₂O₃

Wt of Fe =No. moles Fe * AW =0.37728 g Fe

% Fe =
$$\frac{0.37728 \text{g Fe}}{1.1324 \text{g sample}} \times 100\% = 33.32\%$$

$$Fe_3O_4 \longrightarrow 3 Fe, Fe_2O_3 \longrightarrow 2 Fe$$

No moles
$$Fe_3O_4 = 1 \mod Fe_3O_4$$
 * no. mol Fe = 3 mol Fe

No moles Fe =
$$2 \mod Fe$$
 * no mol Fe₂O₃ = $1 \mod Fe_2O_3$

3 mol Fe₂O₃

No moles
$$Fe_3O_4 = 1 \mod Fe_3O_4 * 2 \mod Fe * no \mod Fe_2O_3$$

 $3 \mod Fe = 1 \mod Fe_2O_3$
No moles $Fe_3O_4 = 2 \mod Fe_3O_4 * no \mod Fe_2O_3$

No moles
$$Fe_3O_4 = 2 \mod Fe_3O_4^* 3.3778^*10^{-3} \mod Fe_2O_3 \mod = 3 \mod Fe_2O_3$$

No moles $Fe_3O_4 = 2.2519 \times 10^{-3}$ mol

wt Fe₃O₄ = **2.2519*10⁻³ (mol) * (231.54 g/mol)= 0.52140 (**g)

%
$$Fe_3O_4 = Wt Fe_3O_4 (g) * 100\% = 46.04\%$$

Wt sample (g)

Chapter 5 : Questions no. 12,13,14, 15, 18, 24,25, 26, 27, 28, 30, 38

See also example : 5-3, 5-5