Precipitation titration part 1

Dr. Mai Ramadan

• Introduction:

Ksp

• Argenometry:

Moher's-, Volhard's- and Fajan's methods

- Indicators
- Examples and Problems

Introduction

A precipitation titration is accompanied by formation of precipitate (sparingly soluble salts).

The common **subtypes** are argenometry and mercurimetry

Introduction

Solubility product constant: K_{sp}

AgCI (s)
$$\longleftrightarrow$$
 Ag⁺ + CI⁻
K_{sp} = [Ag⁺] [CI⁻]

$$Ag_{2}CrO_{4} (s) \iff 2 Ag^{+} + CrO_{4}^{-2}$$
$$K_{sp} = [Ag^{+}]^{2} [CrO_{4}^{-2}]$$

Indicators

Moher's Method : Coloured precipitate

Titrant: AgNO₃ Analyte: Cl⁻ and Br⁻ but not l⁻ **Indicator**: K₂CrO₄ solution Media: is neutral or slightly acidic. Not basic: to prevent precipitation of Ag⁺ (write equations) Not strongly acidic: to prevent chromate-dichromate equilibrium to detect end point (why) **End point: Red precipitate** Ag₂CrO₄

 $2 \operatorname{Ag}^{+} + \operatorname{CrO}_{4}^{-2} \longrightarrow \operatorname{Ag}_{2}\operatorname{CrO}_{4}(s)$

Moher's Method : Analysis of chloride ion

1. Analyte solution + chromate (Yellow colored)

3. At end point slight excess Ag+ form Ag₂CrO₄ (Red ppt) AgCl is present

3. After end point large excess Ag+ form

Moher's Method : Analysis of chloride ion

See video for titration on you tube

https://youtu.be/ODnPyAy-Z54

Indicators

Moher's Method : Colored precipitate

 $2 \operatorname{CrO}_4^{-2} + 2 \operatorname{H}_3^{O^+} \longrightarrow \operatorname{Cr}_2^{O_7^{-2}} + 3 \operatorname{H}_2^{O_7^{-2}}$

 $3 \operatorname{Cr}_2 \operatorname{O}_7^{-2} + 2 \operatorname{H}_3 \operatorname{O}^+ \longrightarrow 2 \operatorname{Cr}_3 \operatorname{O}_{10}^{-2} + 3 \operatorname{H}_2 \operatorname{O}$

 $4 \operatorname{Cr}_3 \operatorname{O}_{10}^{-2} + 2 \operatorname{H}_3 \operatorname{O}^+ \longrightarrow 3 \operatorname{Cr}_4 \operatorname{O}_{13}^{-2} + 3 \operatorname{H}_2 \operatorname{O}$

Indicators

Volhard's method : Colored solution

- Analyte: Br⁻, I⁻, possible Cl⁻ specific condition.
- Titrant: KSCN , NH4SCN
- Media: acidic (Ag⁺?, Fe⁺³?)

AgNO₃: A known amount is added to analyte followed by titration of Ag⁺unreacted

 $Ag^+ + SCN^- \longrightarrow AgSCN(s)$

Indicator : NH₄Fe(SO₄)₂.12 H₂O

End point: Bloody red colour of the solution.

 $Fe^{+3} + 3 SCN^{-} + 3 H_2O \longrightarrow [Fe (SCN)_3(H_2O)_3]$

Volhard method : Analysis of bromide

Indicators Volhard method : Colored solution

Ksp of AgCl is larger than AgSCN.

AgCl (s) + SCN⁻ \longrightarrow AgSCN (s) + Cl⁻

The above reaction lead to an overconsumption of the titrant SCN⁻ during back titration.

The solution: Specific condition

1. Add organic solvent to coat the precipitate AgCl and keep isolated from titration media e.g .CHCl3, CCl4, nitrobenzene

2. Filtrate AgCl then backtitrate the filtrate.

Modified volhard's method : Chloride analysis

Modified volhard's method :Chloride analysis

Precipitation titration part 2

Dr. Mai Ramadan

Indicators

Fajans' method : Adsorption indicator

The indicator causes coloration of the precipitate after being adsorped on the surface of precipitate.

Example: Fluorescein (Cl⁻) and eosin for (Br⁻ and l⁻).

X = H, Fluorescein X = Br, Eosin

Indicators Fajans' method : Adsorption indicator

Indicators Fajans' method : Adsorption indicator

Indicators

Fajans' method : Adsorption indicator

Ag fluoresceinate is not a precipitate. The colour is disturbed by addition of chloride ions due to **desorption** of fluoresceinate.

The adsorption affinity of particles to indicator must be smaller than that of analyte ions.

This affinity is decrease in the following order $I, CN > SCN > Br > eosin > CI > Ac > fluorescein > NO_3 > CIO_4$.

Indicators

Fajans' method : Adsorption indicator

Adsorption indicators were first described by K. Fajans, a Polish chemist in 1926.

Titrations involving adsorption indicators are rapid, accurate, and reliable, but their application is limited to the few precipitation titrations that form **colloidal precipitates rapidly**.

Fajans Titration

Fajan's method of chloride with AgNO₃ using flourescine (a): Indicator before beginning titration (b): AgCl precipitate before end point (c): indicator adsorbed on precipitate after end point

Fajans' method : Analysis of chloride

See video in you tube channel

https://youtu.be/rEKtsaofmXM

Application of precipitation titration

Species analyzed	Notes
	Volhard Method
Br-, I-, SCN-, CNO-, AsO]-	Precipitate removal is unnecessary.
CI ⁻ , PO ¹ ₂ ⁻ , CN ⁻ , C ₂ O ² ₄ ⁻ , CO ² ₁ ⁻ , S ²⁻ , CrO ² ₁ ⁻	Precipitate removal required.
BH ₄	Back titration of Ag ⁺ left after reaction with BH ₄ :
	$BH_4^- + 8Ag^+ + 8OH^- \rightarrow 8Ag(s) + H_2BO_1^- + 5H_2O$
κ*	K ⁺ is first precipitated with a known excess of (C ₆ H ₅) ₄ B ⁻ . Remaining (C ₆ H ₅) ₄ B ⁻ is precipitated with a known excess of Ag ⁺ . Unreacted Ag ⁺ is then titrated with SCN ⁻ .
	Fajans Method
CI-, Br-, I-, SCN-, Fe(CN)6-	Titration with Ag*. Detection with dyes such as fluorescein, dichlorofluorescein, eosin, bromophenol blue.
F-	Titration with Th(NO ₃) ₄ to produce ThF ₄ . End point detected with alizarin red S.
Zn ²⁺	Titration with K4Fe(CN)6 to produce K2Zn1[Fe(CN)6]2. End-point detection with diphenylamine.
SO ₁	Titration with Ba(OH)2 in 50 vol% aqueous methanol using alizarin red S as indicator.
Hgi+	Titration with NaCl to produce Hg ₃ Cl ₃ . End point detected with bromophenol blue.
PO4 ⁻ , C ₂ O4 ⁻	Titration with Pb(CH ₃ CO ₂) ₂ to give Pb ₃ (PO ₄) ₂ or PbC ₂ O ₄ . End point detected with dibromofluorescein (PO ₄ ⁻) or fluorescein (C ₂ O ₄ ⁿ⁻).

Precipitation titration part 3

Dr. Mai Ramadan

Suppose a method using argenometry for determination of K+? (Hint look to the table on the previous slide)

1. Add to K+ solution a known amount (Volume and concentration of tetraphenyl boron------ a ppt will be formed (Write balance equation)

2. Add a known amount of Ag+ to the above solution. Unreacted tetraphenyl boron reacts with Ag+ (Write balance equation)

3. Titrate the unreacted Ag+ with SCN⁻ standard solution (Write balance equation)

Argenometry for determination of K+?

No. mole $B(C_6H_5)_4$ (total) = Known

No. mole Ag⁺ (total) = Known

1.
$$K^+ + B(C_6H_5)_4^- \longrightarrow KB(C_6H_5)_4$$

2.
$$Ag^+_{reacted}$$
 + $B(C_6H_5)_4^-_{unreacted}$ \longrightarrow $AgB(C_6H_5)_4$

3.
$$Ag^+_{unreacted}$$
 + $SCN^- \longrightarrow AgSCN$

No. mole SCN⁻ (Titrant) = Volume * Conc.

- A silver nitrate solution contains 14.77 g of primary standard AgNO₃
- in 1.00 L. What volume of this solution will be needed to react with
- (a) 0.2631 g of NaCl?
- (b) 64.13 mg of Na_3AsO_4 ?
- (c) 50.00 mL of 0.01808 M H_2 S?
- (d) 0.3462-g sample ZnCl₂ assayed 74.52% (w/w)?

Conc (M) * Vol (mL) = 0.925 (mmol)

Vol = 10.63 (mL)

d) 0.3462-g sample ZnCl₂ assayed 74.52% (w/w)?

Vol = 0.044 (L)

Fajans titration of a 0.7908-g sample required 45.32 mL of 0.1046 M AgNO₃. Express the results of this analysis in terms of the percentage of:

(a) CI[−].
(b) BaCl₂. H₂O.
(c) ZnCl₂. 2NH₄Cl (243.28 g/mol).

A 2.00 L sample of mineral water was evaporated to a small volume following which K⁺ was precipitated with excess sodium tetraphenyl boron:

 K^+ + NaB(C₆H₅)₄ \longrightarrow KB(C₆H₅)₄ (s) + Na⁺ The precipitate was filtered, washed and re-dissolved in acetone. The analysis was completed by a Moher titration that required 43.85 mL of 0.03941 M AgNO₃

$$KB(C_6H_5)_4 + Ag^+ \longrightarrow AgB(C_6H_5)_4 (s) + K^+$$

Calculate the K⁺ concentration (ppm) in water sample?

No mmol Ag⁺ = 43.85 (mL) * 0.03941(M) = 1.728 (mmol)

No mmol Ag⁺ = no mmol KB(C₆H₅)₄ = no mmol K⁺ = 1.728 (mmol)

Conc K⁺ (ppm) = Wt of K+ (mg) = no mmol * AW =
Vol (L) Vol (L)
=
$$1.728 \text{ (mmol) * } 39 \text{ (mg/mmol)} = 33.7 \text{ (ppm)}$$

2.0 (L)

Precipitation titration part 4

Dr. Mai Ramadan

The phosphate in a 4.258 g sample of plant food was precipitated as Ag_3PO_4 through the addition of 50 ml of (0.0820 M) $AgNO_3$. The solid was filtered and washed, following which **the filtrate and washings were diluted to exactly 250 ml**. Titration of a 50.0 ml aliquot of this solution required a 4.64 ml back titration with 0.0625 M KSCN. Express the result of analysis in terms of **the percentage of P₂O₅**. (MW P₂O₅ = 141.99)

$$3 \operatorname{Ag}^{+} + \operatorname{PO}_{4}^{-3} \longrightarrow \operatorname{Ag}_{3}\operatorname{PO}_{4}(s)$$

Hint: titration with SCN is for Ag+ unreacted remaining in filtrate.

Solution : 1.47%

No mmol Ag⁺ (total) = 50 (mL) * 0.0820 (M) = 4.1 (mmol) No mmol Ag⁺(unreacted) = no mmol KSCN = 4.64 (mL) * 0.0625(M) = 0.29 (mmol) No mmol Ag⁺(unreacted) 0.29 (mmol) ------ 50 mL ? ----- 250 mL No mmol Ag⁺(unreacted) = 1.45 (mmol)

No mmol Ag⁺ (reacted) = Total – unreacted = 2.65 (mmol)

No mmol $PO_4^{-3} = 1 \mod PO_4^{-3}$ * no mmol Ag^+ (reacted) = 0.88 (mmol) 3 mol Ag^+ No mmol $P_2O_5 = 1 \mod P_2O_5^{-3}$ * no mmol $PO_4^{-3} = 0.44$ (mmol) 2 mol PO_4^{-3} % $P_2O_5 = 0.44 * 10^{-3}$ (mol) * 141.99 (g/mol) * 100 = 1.47% 4.258 (g)

The monochloroacetic acid (ClCH₂COOH) preservative in a 100 ml of a carbonate beverage was extracted into diethylether and then return to aqueous solution as $ClCH_2COO^-$ by extraction with 1 M NaOH. This aqueous solution is acidified and treated with 50 ml of 0.04521 M AgNO₃. The reaction is

 $CICH_2COOH + Ag^+ + H_2O \longrightarrow HOCH_2COOH + H^+ + AgCl (s)$

After filtration of AgCl, titration of filtrate and washings required 10.43 ml of an NH_4SCN solution. Titration <u>of blank</u> taken through the entire process used 22.98 ml of NH_4SCN . Calculate the weight in mg ClCH₂COOH in the sample.

Blank: is a sample with no analyte.

Solution: 117 mg

Liquid - Liquid extraction for purification

Remember: AgCl is filtered before back-titration with SCN⁻

Blank

No mmol Ag⁺ (total) = 50 (mL) * 0.04521 (M) = 2.2605 (mmol) No mmol Ag⁺ (total) = no mmol NH₄SCN = 22.98 (mL) * Conc. (M)= Conc (M) NH₄SCN = 2.2605 (mmol) = 0.098 (M)

22.98 (mL)

No mmol Ag⁺ (total) = 50 (mL) * 0.04521 (M) = 2.2605 (mmol)

No mmol Ag⁺(unreacted) = no mmol NH₄SCN =10.43 (ml) * 0.098 (M) = 1.022 (mmol)

No mmol Ag⁺(reacted) = Total – unreacted = 1.2385 (mmol)

No mmol CICH₂COOH = no mmol Ag⁺(reacted) = 1.2385 (mmol)

Wt of CICH₂COOH in sample = no mmol * MW =

= 1.2385 (mmol) * 94.45 (mg/mmol)= **117 (mg)**

Examples: 13-2

Problems Chapter 13: 1, 2, 3, 7, from 9 to 18, from 21 to 25, 27, 28.