بسم الله الرحمن الرحيم

Quantitative WS/2014-201	analytical	Chemias
WS/2014-201	5	chemistry

15.01.2015 MCQ-part

Namar	DI WOOD IN THE PROPERTY OF THE
riallie:	
CONSIDER TO THE	
	A control of the cont
	• 11 1 1

بالعربية	رباعيا	الأسم	كتابة	الرجاء

Q1 Q2		Q3	Q4	Bonus	Total
30	10	10			
	10	10	10	10	60

The answers of MCQ part should be given in the following answer sheet:

No.	S. 10				-	No.					
1	a	b	С	d	e	11	a	b	С	d	e
2	a	ь	С	d	е	12	a	b	С	d	e
3	a	b	С	d	e	13	a	ь	С	d	e
4	a	b	С	d	e	14	a	b	С	d	е
5	a	b	С	d	e	15	a	ь	С	d	е
6	a	b	С	d	e	16*	a	b	С	d	e
7	a	b	С	d	e	17*	a	b	С	d	e
8	a	b	c	d	e	18*	a	b	С	d	e
9	a	ь	С	d	e	19*	a	b	С	d	e
10	a	b	С	d	e	20*	a	b	c	d	e

^{*:} Calculations are asked

[I] Select the col	rect answer	of the following	ng: Explain calcul	ation 16-20:
1 If 0.02 mol H	or is added to	200 ml 0 1Nr	NH ₃ (K _b =1.7*10 ⁻⁵), (d) pH = pOH=	225 225
2. An initial pH of nearly vertical management (a) Strong acid to (b) Strong base to (c) Weak acid to (d) Weak base to (e) Weak base to (e) Weak base to (e) Weak base to (e) Weak base to (finite terms)	itrated by street itrated by street trated by street trated by street	ong base. ong acid. ong acid. ong acid. ong acid.	at at pH 7.0, and a not a total a titration curve f	relatively long, for
3. Which of the(a) Thioacetami(c) AgNO₃(e) Ammonium	de.	not a precipit		henylboron. sulfate.
			tor for redox titration	on: (e) None
5. The following (a) HNO ₂ (0.06) (c) HCOOH (0) (e) None of the	6 M) / NaOH .06 M)/HF (0	(0.06 M)	equal volumes are n (b) H ₂ O / HBr (0 (d) Pyridine (0.6 l	.06 M)
6. Which of the (a) NaBr	e following in (b) KI	s amphoteric? (c) BaCl ₂	(d) NaHCO ₃	(e) Na ₂ C ₂ O ₄
(c) Nitritometr (d) Karl Fisch (e) Iodate and	sed directly as fate is used as y is used to d er reagent con ClO ₃ analys	s a titrant in local s a oxidizing against a settle s a oxidiz	gent in cerimetry. ocaine. I ₂ in organic solver etry.	
8. If pka = 9.2(a) The salt is(b) Dissolve in	of chlorpron acidic. water to give	e chloride ion	loride, what <u>is wro</u>	

S +

الممسوحة صوليا بـ CamScanner

- (e) When titrated with NaOH pH < 7 at equivalence point.
- 9. Regarding Fajan's method what scorrect:

(a) Indirect titration using AgNO₃ in excess to analyte.

(b) Pre-eq. p. affinity to adsorb analyte is higher than indicator.

(c) End point is detected by formation of coloured solution.

(d) Flourescinate anion is indicator adsorbed in counter ion layer post eq.p.

(e) SCN is the titrant.

10. Regarding kjeldhal's method, what is wrong:

(a) It depends on acid base titration.

- (b) It is applied to determine nitrogen in proteins and inorganic substances.
- (c) NH₃ liberated is collected in a previously weighed adsorption media.
- (d) The organic substance is destroyed by boiling with H₂SO₄.
- (e) Back titration is performed with NaOH.
- 11. When Cu (II) ion is analyzed by redox titration, what is correct:

(a) Titrate with oxidizing agent like I2.

(b) Use Ce (IV) as titrant and ferroin as indicator.

(c) KI is added in excess followed by titration with S₂O₃⁻².

(d) Starch as indicator shows end point when the color is blue.

(e) None of the above.

12. What is wrong about nitritometry:

(a) It is called diazotitration.

(b) KBr and acid are added before titration.

(c) During titration nitrite ion oxidizes 1° aromatic amine

(d) Sodium nitrite standard solution is the titrant

(e) Ice bath is needed during titration.

13. Regarding precipitation titration, what is correct:

(a) Excess Ag+ is back titrated with NH₄Cl in volhard's method.

(b) Strongly acidify with HNO3 is advised in Moher's method.

(c) Fe(III)chloride is indicator of choice in volhard's method.

(d) Cl ion is precipitated with excess Ag and filtered before backtitration.

(e) The end point is a colored solution in Moher's method.

14. Regarding EDTA titration techniques, which is incorrect: (a) ErichromblackT color changes to wein red when complexes with cation.

(b) [MgY]⁻² is added to analyte cation and EDTA is liberated.
 (c) Cu⁺² blocks erichromblack T so indirect titration is advised.

(d) To Ag+ [Ni(CN)₄]⁻² is added and Ni⁺² is displaced.

(e) CN forms a stable complex with Ni+2 which does not interfere with EDTA

- 15. Regarding complexometry what is wrong: (a) EDTA is a chelating agent forms tetrahedral complex.
- (c) EDTA reacts with cations 1:1.
- (d) BAL is used to mask pb+2.
- (e) Ammonia buffer is required in EDTA titration.
- 16. If titration of 50 ml metamizol sodium, 20 ml, 0.5 N I₂ were consumed then (c) 0.1 (d) 0.05 (e) 0.025

- 17. What is **ppm** of Ag⁺ (AM=107.86) in 0.5 L if it gives 0.148 g Ag₃PO₄ (MW =418.58): (a) 109 **(b)** 540 (c) 229 (d) 240 (e) 85

18. If 0.04 mol HCl gas passed in 100 ml, 0.2 M NH₃ (Kb=1.7*10⁻⁵), what is correct:

- (a) pH<7
- (b) pH > 7
- (c) pH=pka
- (d) pH = pOH = 7 (e) None

19. If H₃PO₄ (MW=97.99), 85.5% w/w, sp.gr. 1.71, the molar concentration is: (b) 10.5 (a) 14.8

20. What is molarity of sulphate if [BaY] was added to (50 ml) sulphate to precipitate as BaSO4. The liberated edta required titration with 20 ml, 0.02 M MgCl₂ solution:

(a) 0.8

(b) 0.008

[II] a. Explain using example steps of bromatometry?

b. A polluted water sample (1 L) with an insecticides sodium arsenite Na₃AsO₃ (FW=191.88) was analysed as follows: 1.0 ml was diluted in 100 ml volumetric flask. 25 ml of the resulting solution were diluted in 50 ml. 15 ml of the solution were further diluted to 200 ml. 100 ml of the end solution were acidified and 5.2 ml, 0.015 M KlO₃ diluted to 200 ml. 100 ml of the end solution were acidified and 5.2 ml, 0.015 M KlO₃ and Kl in excess were added. After 15 min. the unreacted iodine l₂ was titrated with and Kl in excess were added. After 15 min. the unreacted iodine l₂ was titrated with 8.7 ml, 0.05 M thiosulfate solution. Write balance equations involved in the analysis and calculate the molar and ppm concentration of Na₃AsO₃ in the sample?

الممسوحة صوليا بـ CamScanner

[III] a. Mention conditions of Moher's method (pH, indicator, end point)?

b. A ten tablet sample of Ciprofloxacin.HCI (C₁₇H₁₈FN₃O₃•HCI, MW = 367.80) were pulverized and dissolved in 500 ml. To 50ml aliquot 17.5 mL, 0.15 M AgNO₃ was added. The precipitate was filtered washed and the combined filtrate and washings were diluted in 100 ml. Titration of 50 ml of the resulting solution required 5.1 mL, 0.12M of KSCN. **Calculate** average weight of C₁₇H₁₈FN₃O₃•HCl per tablet? **What** is the name of titration and **how** to detect end point?

الممسوحة صوليا بـ CamScanner

[IV] a. Explain masking technique in EDTA titration with an example?

b. A 1.022 g calamine powder, which consists of zinc and iron oxides, was dissolved in acid and diluted to 250 ml. Potassium fluoride was added to 10.0 ml aliquot of the second 50.0 ml aliquot was and titration of Zn⁺² consumed 2.67 ml, 0.13 M EDTA. solution

What is the condition, that enables the second titrated with a second with a second titrated with a second with a second with a second titrated with a second with a second