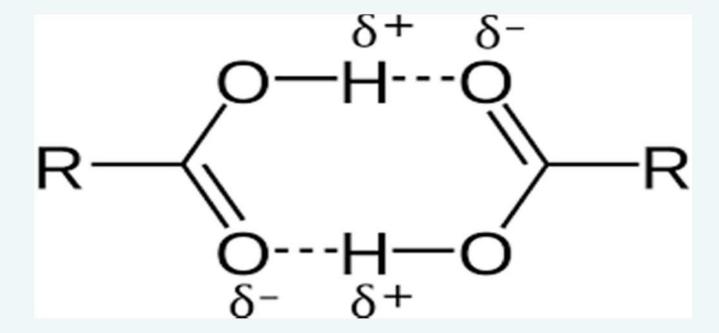
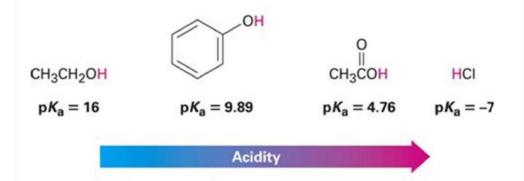

Part 1 Carboxylic acid

Some carboxylic acid containing Drugs


Diclofenac

Indomethacin

Mefenamic acid



Structure and Properties of Carboxylic Acids

III. Acidity of Carboxylic Acids

- Weak acids (pK_a ~ 4-5)
- Stronger than alcohols because conjugate base is resonance-stabilized

Substituent Effects on Acidity

$$pK_a = 4.76$$

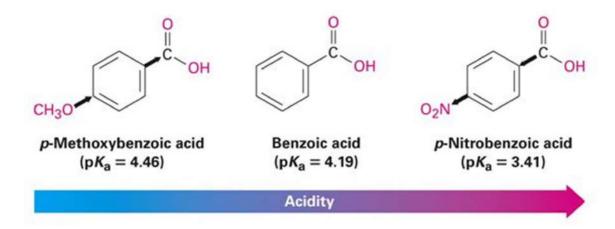
$$pK_a = 3.83$$

$$pK_a = -0.23$$

Acidity

$$pK_a = 4.52$$

$$pK_a = 4.05$$


$$pK_a = 2.86$$

Acidity

III. Acidity of Carboxylic Acids

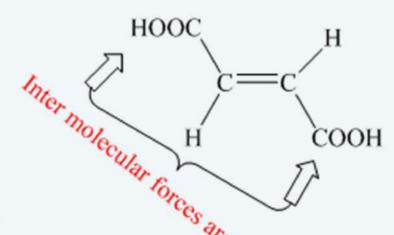
Substituted benzoic acids

- If Z = electron-donating group, acid is weaker
- If Z = electron-withdrawing group, acid is stronger

Effect of intramolecular hydrogen bonding on pKa1 and pKa2 in Dicarboxylic acid

Intra molecular forces are more

Maleic acid

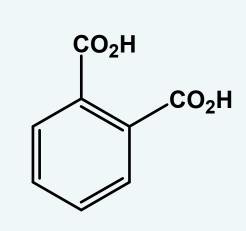

$$mp = 130$$
°C

pKa1

1.9

pKa2

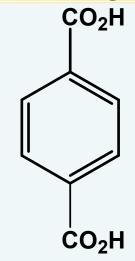
6.5


ho Fumaric acid

mp = 286°C

3.0

4.5


Discuss the values of pKa1 and pKa2 for the following two isomeric dicarboxylic acids

Phthalic acid

pKa1 2.9

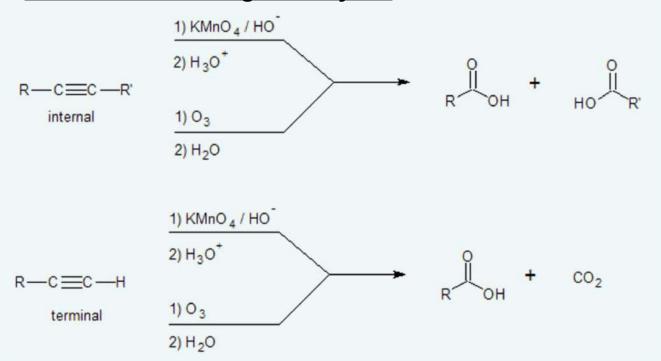
pKa2 5.4

Terephthalic acid

3.5

4.3

Preparing Carboxylic Acids


1- Oxidation of benzylic C-H

$$O_2N$$
 \longrightarrow CH_3 $\xrightarrow{KMnO_4}$ O_2N \longrightarrow COH

p-Nitrotoluene

p-Nitrobenzoic acid (88%)

2- Oxidative cleavage of alkynes

CHE2202, Chapter 20 Learn, 10

Preparing Carboxylic Acids

3- Acidic or alkaline hydrolysis of nitriles

Ibuprofen

Preparing Carboxylic Acids

5- Oxidation of a primary alcohol or an aldehyde yields a carboxylic acid

$$\begin{array}{cccc} \text{CH}_3 & \text{CH}_3 & \text{O} \\ | & & | & | \\ \text{CH}_3\text{CHCH}_2\text{CH}_2\text{CH}_2\text{OH} & \xrightarrow{\text{CrO}_3} & \text{CH}_3\text{CHCH}_2\text{COH} \\ \end{array}$$

4-Methyl-1-pentanol

4-Methylpentanoic acid

$$\begin{array}{ccc} & & & & & & & \\ O & & & & & \\ CH_3CH_2CH_2CH_2CH & & & & \\ & & & & \\ H_3O^+ & & & \\ \end{array} \\ & & & CH_3CH_2CH_2CH_2CH_2COH \\ \end{array}$$

Hexanal

Hexanoic acid

5- Carboxylation of Grignard Reagents

Phenylmagnesium bromide

Benzoic acid

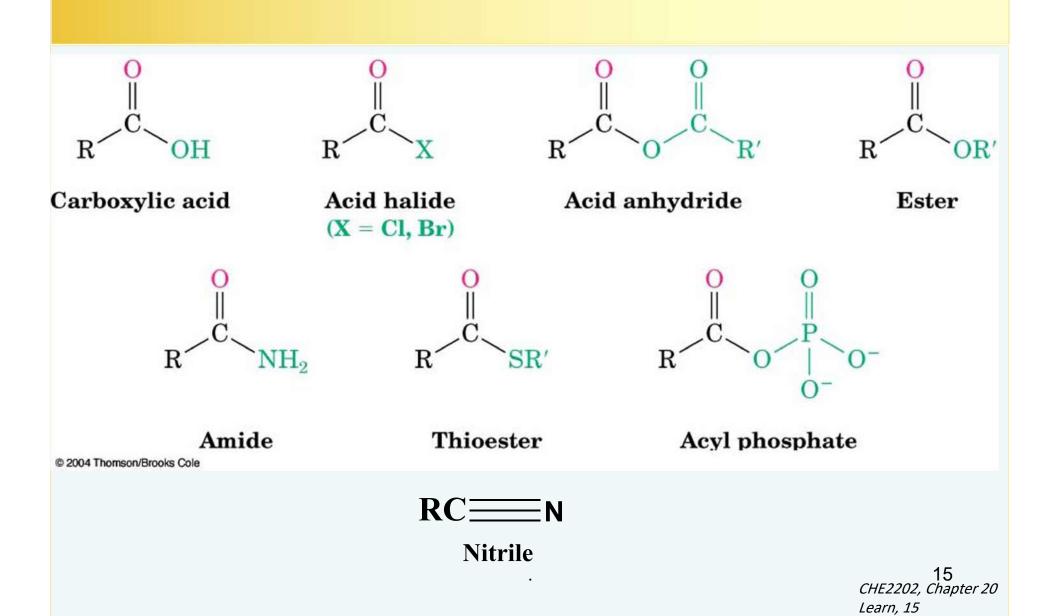
Limitation of Grignard Reagents

1) Mg(dry ether) 2) CO₂

G CH₂Br

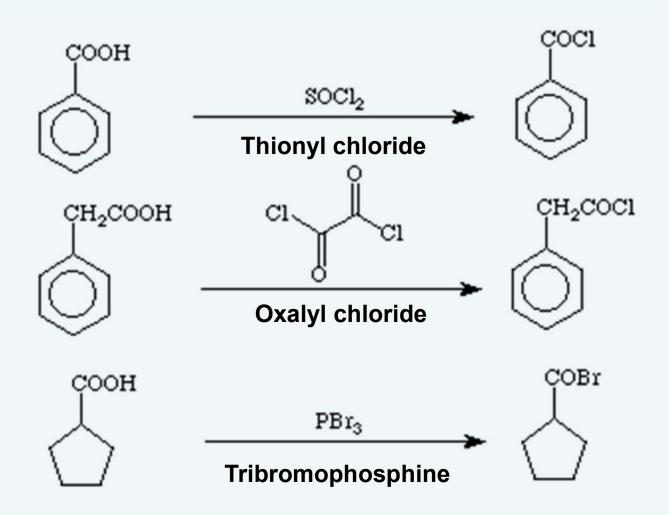
- 3) H₃O⁺
- 1) NaCN 2) H₃O⁺

G CH₂CO₂H

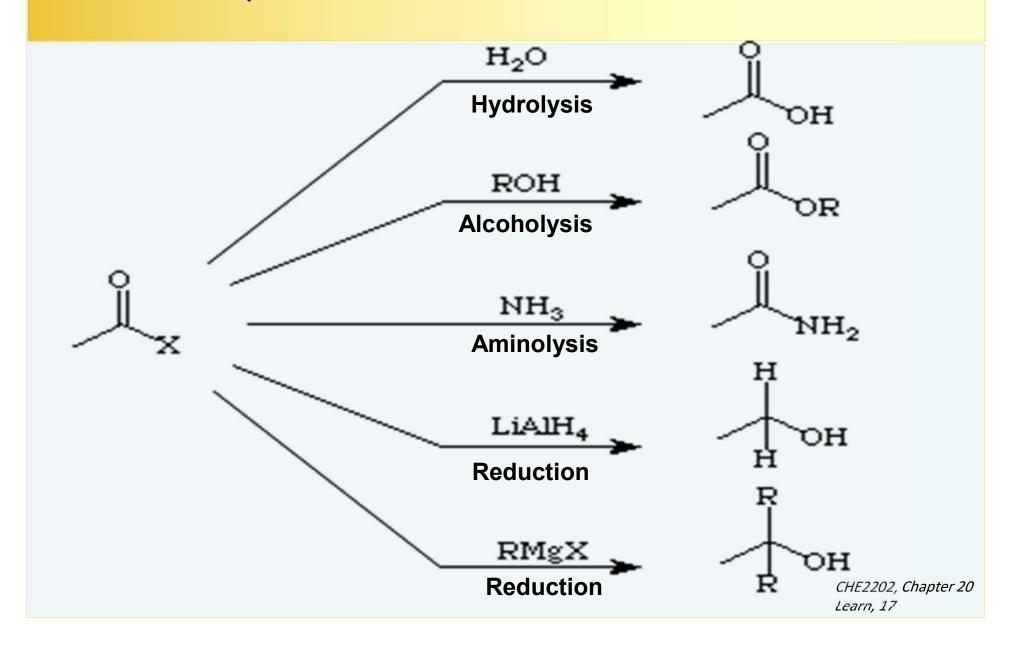

G = Acidic group such; SO₃H, CO₂H, OH, SH

- $\frac{1) \text{ Mg(dry ether)}}{2) \text{ CO}_2}$ X
- 3) H₃O⁺
- 1) NaCN 2) H₃O⁺

Part 2 Derivatives of Carboxylic Acid

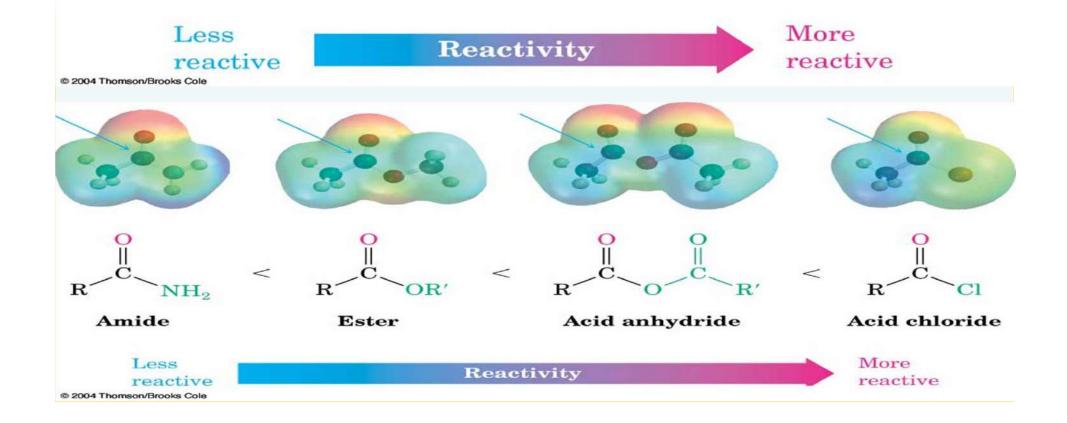

1- Acid halide

Carboxylic Acid Derivatives


Carboxylic acid derivatives 1-Chemistry of Acid halides

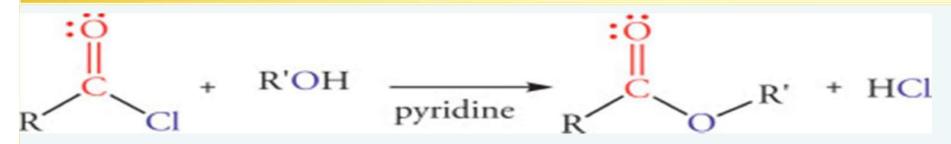
There are three main methods to prepare acid halide

CHE2202, Chapter 20 Learn, 16


Reaction of acid halide (common reactions for all derivatives"

Nucleophilic Acyl Substitution

General mechanism of Nucleophilic Acyl Substitution


Relative Reactivity of Carboxylic Acid Derivatives toward Nu Acyl Sub

1] Hydrolysis of acid halides "yields carboxylic acid"

Carboxylic acid

2] Alcoholysis of acid Halides "yields an ester"

Mechanism of acloholysis of acid halide

Phenolysis of acid halides

OH
$$H_{3}C$$

$$CH_{3}$$

Phenoxide is stronger Nu Than the neutral form!!!!

$$\bigcirc - \overset{\wedge}{\bigcirc} + \overset{\wedge}{\bigcirc} \stackrel{\wedge}{\longrightarrow} - \overset{\wedge}{\bigcirc} - \overset{\wedge}{\bigcirc} + \overset{\wedge}{\bigcirc} \stackrel{\wedge}{\longrightarrow} - \overset{\wedge}{\bigcirc} - \overset{\wedge}{}} - \overset{\wedge}{\bigcirc} - \overset{$$

Intramolecular alcoholysis

3] Aminolysis of acid halide "yields an amide"

Intramolecular aminolysis affords Lactam

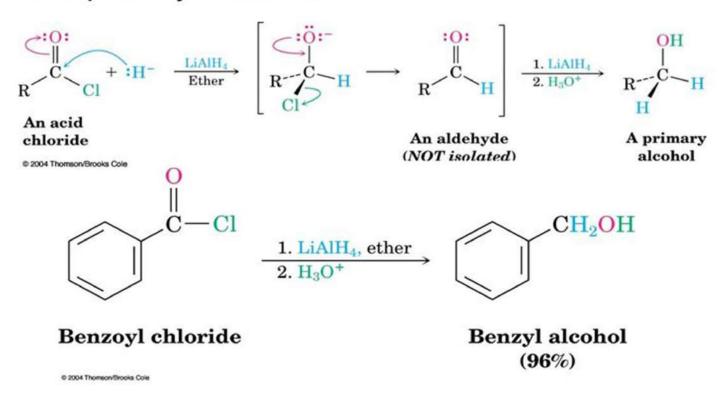
$$H_2N$$
 Cl
 Δ
 NH

Some reactions related to phosgene

4] Reduction of acid haldies "yields an alcohol"

a] Using Grignard reagent "yields ketone with one mole of GR and 3 alcohol with two moles":-

$$CH_{3}-\overset{\square}{C}-CI \xrightarrow{\qquad \qquad CH_{3}-\overset{\square}{C}-\overset{\square}{C}-\overset{\square}{C}} \xrightarrow{\qquad \qquad MgBr}$$


$$CH_{3}-\overset{\square}{C}$$

Mechanism

b] Reduction of acid halide using LiAlH4

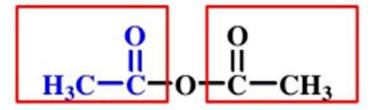
iv. Reduction: Conversion of Acid Chlorides into Alcohols

LiAlH₄ reduces acid chlorides to yield aldehydes and then primary alcohols

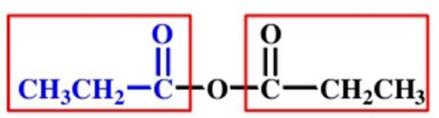
Part 3 Derivatives of Carboxylic Acid

2- Acid anhydride

STRUCTURE OF ACID ANHYDRIDE

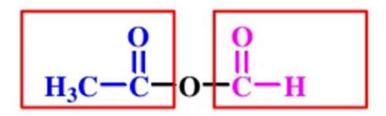

- The word 'anhydride' means without water.
- Contains two molecules of an acid, with loss of a molecule of water.
- Addition of water to an anhydride regenerates two molecules of the carboxylic acid.

General structure:


$$R-C-O-C-R$$
 or $(RCO)_2O$ acid anhydride

NOMENCLATURE OF ACID ANHYDRIDE

- The word 'acid' is changed to 'anhydride' in both common name and the IUPAC name.
- Examples:
 - ethanoic acid → ethanoic anhydride
 - propanoic acid → propanoic anhydride


IUPAC : ethanoic anhydride common: acetic anhydride

IUPAC: propanoic anhydride common: propionic anhydride

NOMENCLATURE OF ACID ANHYDRIDE

 Anhydrides composed of two different acids are called mixed anhydrides and are named by using the names of the individual acids.

IUPAC : ethanoic methanoic anhydride

common: acetic formic anhydride

- Symmetrical anhydrides: change the word acid of the carboxylic acid to the word anhydride.
- Mixed anhydrides: alphabetizing the names for both acids and replacing the word acid with the word anhydride.

PREPARATION OF ACID ANHYDRIDES

- Acid chloride and carboxylic acid
- Acid chloride and carboxylate salt
- Heating carboxylic acids with ZnO or P2O5
- Heating dicarboxylic acids

FROM ACYL CHLORIDES

- Acyl chlorides react with carboxylate salts to form acid anhydrides.
 - Can be used to prepare both symmetrical and unsymmetrical anhydrides

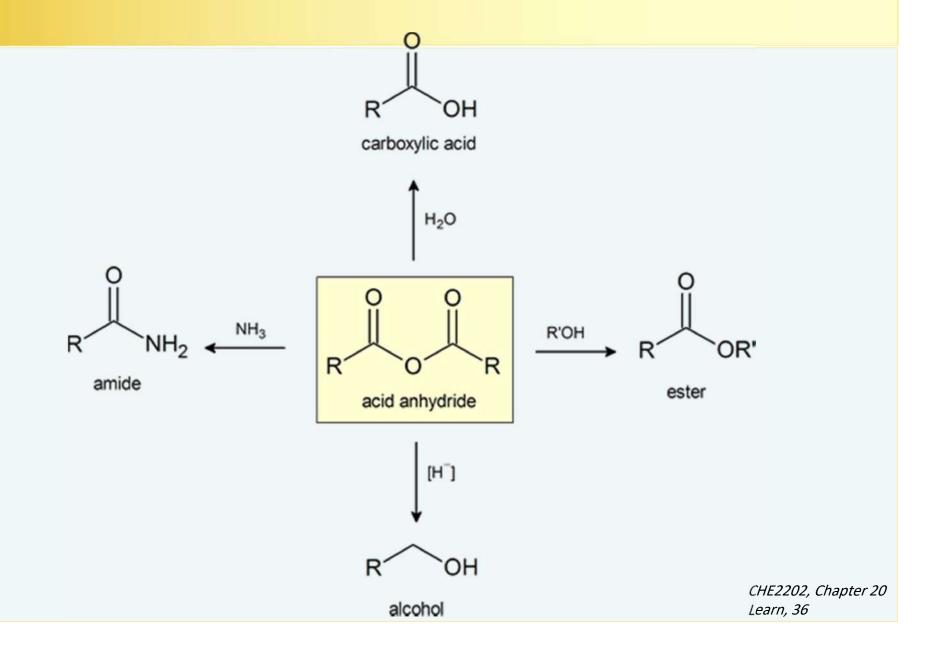
EXAMPLE

 Acyl chlorides also reacts with carboxylic acid to give acid anhydride.

EXAMPLE

HEATING CARBOXYLIC ACIDS WITH ZnO or P205

Acid anhydride can be prepared from heating simple carboxylic acids with zinc oxide. or P2O5


EXAMPLE

HEATING DICARBOXYLIC ACIDS

Certain cyclic anhydride can be prepared by heating dicarboxylic acid such as succinic and phthalic anhydride.

$$HO-C-CH_2-CH_2-C-OH \xrightarrow{300^{\circ}C} \longrightarrow \begin{pmatrix} & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$

Reactions of acid anhydride

HYDROLYSIS

- Acid anhydrides undergoes hydrolysis to produce carboxylic acids.
- Can be carried out in acid or base.
- Carboxylate salts are formed if hydrolysis is done in basic solution.

$$R - C - O - C - R + H - O H - R - C - O H + R - C - O H$$

$$R - C - O - C - R + H - O H - R - C - O - R - R - C - O - R$$

EXAMPLE

$$H_3C-C-O-C-CH_3$$
 + $H_3C-C-OH$ + $H_3C-C-OH$

ALCOHOLYSIS

- Acid anhydrides react with alcohol to produce esters and carboxylic acids.
- Does not required catalyst, but still requires heating.

EXAMPLE

$$H_3C - C - C - CH_3$$
 + $CH_3CH_2 - CH_3$ + $CH_3CH_2 - CH_3$ + $CH_3CH_3 - CH_3$ + CH_3CH_3 + CH_3 + CH_3

Phenolysis of acid anhydride "yields ester"

Notes:- the reaction can be accelerated through activation either the acid anhydride (through adding few drops of conc. acid) or activating the phenol (through adding NaOH)

AMMONOLYSIS

 Amide can be prepared through ammonolysis of acid anhydrides with ammonia, primary and secondary amines.

EXAMPLES:

The last step in both aspirin and paracetamol synthesis

Aspirin (an ester)

© 2004 Thomson/Brooks Cole

LCUIII, TZ

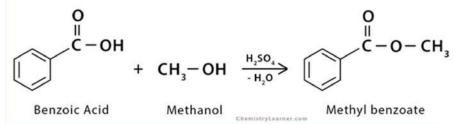
Part 4 Derivatives of Carboxylic Acid

3-Ester

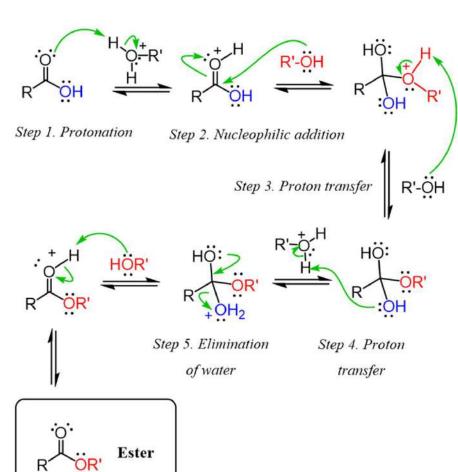
3) Chemistry of ester

Preparations of Ester

1] all alcoholysis and phenolysis of acid halide or acid anhydride. " studied before"

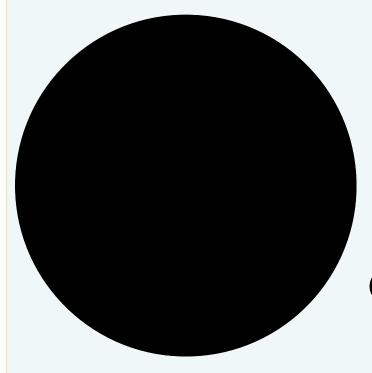

2] Fischer esterification

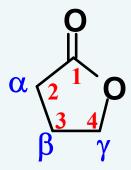
Fischer Esterification Examples



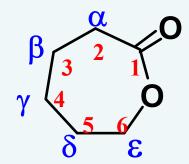
Isopentyl acetate

2. Aromatic ester


Fischer Esterification Mechanism



CHEZZOZ, CHAPIET 20 Learn, 44


Esters

- Lactone: A cyclic ester.
 - name the parent carboxylic acid, drop the suffix -ic acid and add -olactone.

4-Bu tanolactone (γ-Bu tyrolactone)

6-Hexan olacton e (ε-Cap rolactone)

Intramolecular Fisher Esterification leads to form Lactone ctone

HÖ
$$\stackrel{:\circ}{\bigcirc}$$
 HH $\stackrel{:\circ}{\bigcirc}$ HH $\stackrel{:}{\bigcirc}$ HH $\stackrel{$

Nu Sub of alkyl halide by carboxylate salt

Reactions of Esters

© 2004 Thomson/Brooks Cole

Reaction of ester

1- Hydrolysis of ester:-

a] acidic hydrolysis

ACID HYDROLYSIS OF A TRIGLYCERIDE

14

COOH
$$OCOCH_3 + H_2O \xrightarrow{H_3O} H_3O + CH_3COOH$$
acetylsalicylic acid salicylic acid acetic acid

CHE2202, Chapter 20 Learn, 49

Mechanism of Acid-Catalyzed Esters Hydrolysis

Lactone "cyclic ester" acidic hydrolysis

b] Alkaline hydrolysis of ester "Saponification"

3] Alcoholysis of ester Trans-esterification

Easter conversion to different ester through changing the original alcohol

4] Aminolysis of Esters" amide & Lactam synthesis"

5] Reduction: Conversion of Esters into Alcohols

1] Using LiAlH₄ yields primary alcohols

Mechanism

© 2004 Thomson/Brooks Cole

A primary alcohol

CITEZZUZ, CHAPIC'T 20

Learn, 54

Partial Reduction of ester

2] Using DIBAH (DIBAL) yields Aldehyde

Example 1: Reduction of esters to aldehydes

3] Using RMgX yields ketone then alcohol when React with 2 equivalents of a Grignard reagent to yield a tertiary alcohol

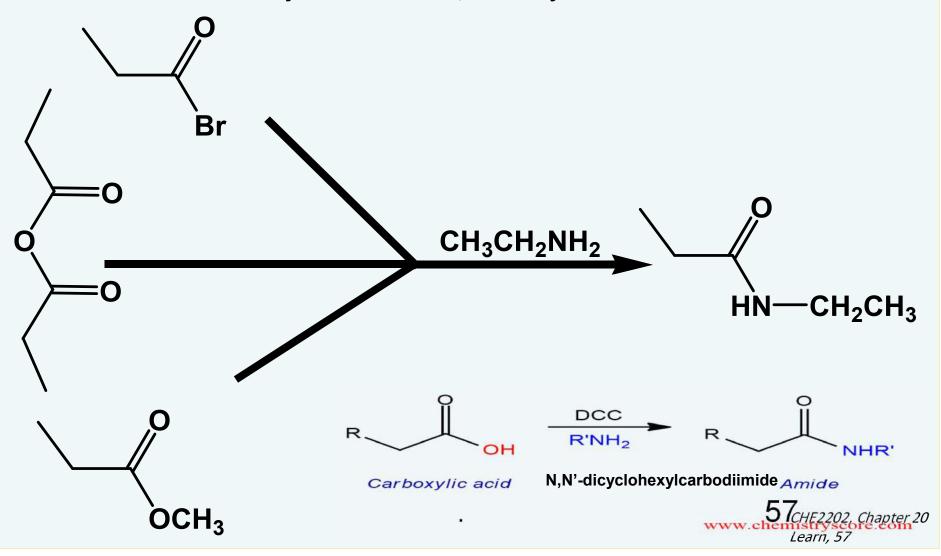
Valerolactone

5-Methyl-1,5-hexanediol

CH₃CCH₂CH₂CH₂CH₂OH

CH₃

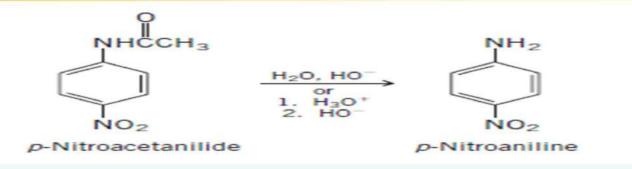
to prevent further reduction


5pter 20

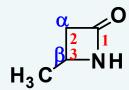
Part 5 Derivatives of Carboxylic Acid

4-Amide 5-Nitrile

4) Chemistry of Amides Preparation:-


Aminolysis of acid halide, acid anhydride and ester

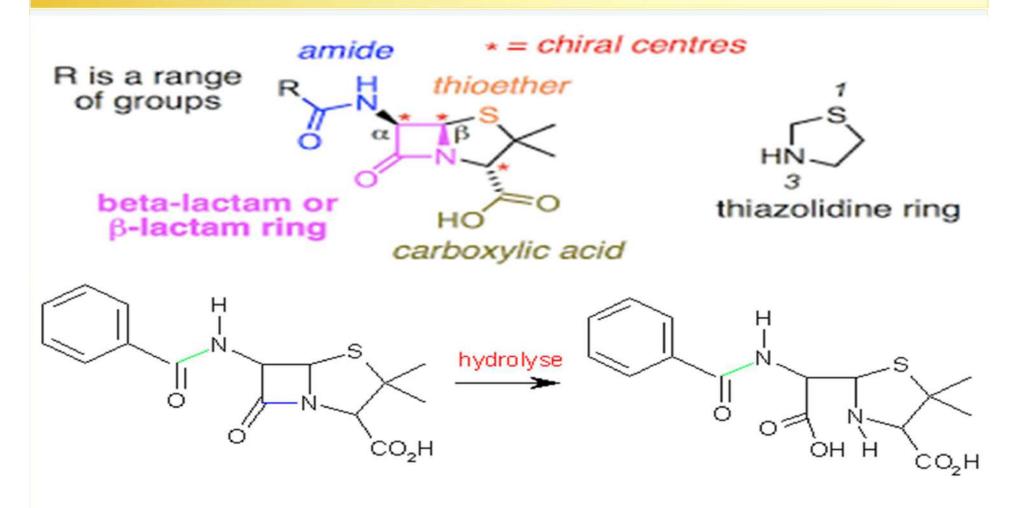
3] Reaction of amides


a- Acidic Hydrolysis

b- Alkaline Hydrolysis

Name the parent carboxylic acid, drop the suffix -ic acid and add -lactam.

Lactam



3-Butanolactam (β-Butyrolactam)

$$\beta \begin{array}{c} 3 \\ 2 \\ 1 \\ 1 \\ 0 \\ \hline \\ 8 \\ \end{array}$$

6-Hexanolactam (ε-Caprolactam)

B-Lactam ring hydrolysis

Benzyl penicillin

Benzyl penicilloic acid

CHE2202, Chapter 20 Learn, 60

Penicillin hydrolysis

CHE2202, Chapter 20 Learn, 61

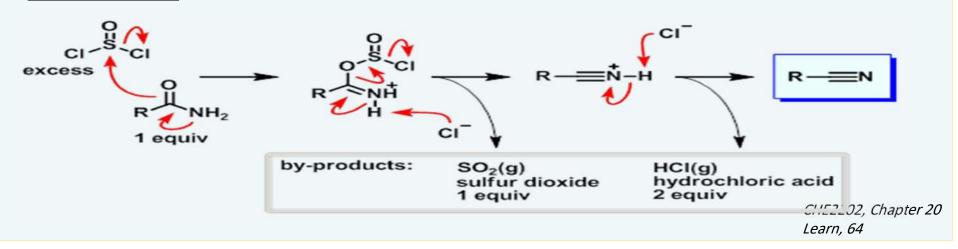
3] Alcoholysis of amide

Aminolysis of an ester can be done; while Alcoholysis of amide can not be achieved directly?

4- Reduction: Conversion of Amides into Amines using LIAIH4

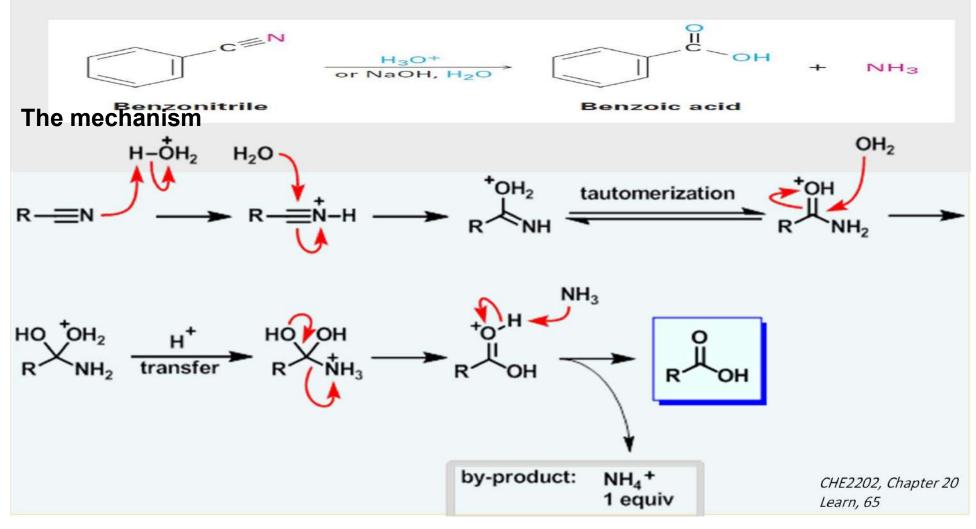

Learn, 63

- Reduced by LiAlH₄ to an amine rather than an alcohol
- Converts C=O \rightarrow CH $_2$ (Looks-like wolf-kischnner and Elemmenson"


5- Chemistry of Nitriles

1- Nu Sub of alkyl halide using cyanide salt via SN1 or SN2

2- Reaction of primary amide with thionyl chloride


The mechanism

Reactions of Nitriles

Hydrolysis: Conversion of Nitriles into Carboxylic Acids

 Hydrolyzed in with acid or base catalysis to a carboxylic acid and ammonia (or an amine)

2] Reduction of nitrile a- Using LiAlH4 (yields amine)

$$C \equiv N \qquad \frac{1) \text{ LiAIH}_4}{2) \text{ H}_2 \text{O}} \qquad CH_2 \text{ NH}_2$$

The mechanism

?202, Chapter 20 า, 66

b- Using DIBAL (yields aldehyde)

c- Using Grignard reagent (yields ketone)

$$CH_3CH_2C \equiv N \qquad \frac{1. CH_3CH_2MgBr}{2. H_2O} \qquad CH_3CH_2CCH_2CH_3$$

$$R-C = N: \qquad \vdots R'^{-} + MgX \qquad \vdots N: \qquad \vdots R' \qquad H_2O \qquad \vdots N \qquad H_2O \qquad H_3$$

Nitrile

Imine anion

Ketone

d- Using H2/Ni (yields amine)

CHE2202, Chapter 20 Learn, 67