1 H-NMR Discussion Part 1

March/2021

How to study

1] Elementary particles such as electrons and nucleus have magnetic feature.

a) True

b) False

2] What do you expect to observe in the 1H NMR spectrum of chloroethane CH₃CH₂Cl?

- a) A doublet and a quartet
- b) Two doublets.
- c) A triplet and a quartet
- d) A doublet and a triplet.

3] Which of the following compounds contains one or more protons that could undergo exchange with D₂O

- a) CH3OH
- b) (CH3)3N
- c) (CH3)2O
- d) CH3Br

4] J-Coupling is _____ between adjacent peaks.

a)Distance

- b)Distance ratio
- c) two-fold ratio
- d)All of these
- Predict the simple chemical structure of the molecular formula that matches the following spectrum ?
- Draw the HNMR spectrum of a given structure.
- Specify splitting patterns for a given structure.
- Explain why !!!!!
- How to distinguish between two compounds !!

Al-Azhar University College of pharmacy Pharmaceutical Chem. Dept. Instrumental Analysis

Dr. Kanan M. Al Wuhaidi

1. Explain in brief the difference between classic and modern methods for analysis

Introduction, H-NMR

- 2. What is the difference between Precision and accuracy?
- 3. What is Spectroscopy?
- 4. What is the difference between Spectrum and spectrometer?
- 5. What is EMR?
- 6. Which part does the UV radiation affect in chemical structure?
- 7. Which part does the IR radiation use to investigate?

الرجوع الى الملزمة وفيها الاسئلة

Distinguished Singlet C-H of aldehydes around 9

Distinguished triplet and quartet peaks CH₃CH₂ system

Propanoic acid

Ortho, meta and para disubstituted benzene (Distinguished para system)

• The only aromatic that shows singlet; benzene and the para symmetrical one

 Mono-substituted benzene shows multiplet (overlapped over each other appears upon expansion appears in aromatic region)

The distinctive pattern is the pair of doublets, can be widely spaced or closed

The distinctive pattern is the pair of doublets, can be widely spaced or closed

p-Toluidine

The distinctive pattern is the pair of doublets, can be widely spaced or closed

Match the correct structure

Distinguished Singlet methyl (CH3)

Distinguished doublet/septet system (Isopropyl group)

Distinguished singlet with 9H integration (tertiary butyl group) around 1-2 ppm

1 H-NMR Discussion Part 2

March/2021

1] Predict how many hydrogen types (signals) in each of the following compounds

2] How many H-NMR signals would you expect to find in each of the following compounds?

CF₃

CF₃

3] Which compound shows three signals (all singlets) in 1H NMR spectrum

4] How would you use the H-NMR to distinguish between each of the following pairs of compounds? (Just tell how many peaks does each compound show)

5] How many signals are predicted for the ¹H NMR of the following compound?

What is the multiplicity of the methylene hydrogens indicated in the proton NMR of the following compound?

- A. singlet
- B. doublet
- C. triplet
- D. quartet
- E. pentet

6] The 1H NMR of the given compound has four signals with the following multiplicities

7] Determine the most likely structure of a compound, with the molecular formula C_9H_{12} , which gave a 1H NMR spectrum consisting of:

- a doublet at 1.25 ppm
- a septet at 2.90 ppm and
- a multiplet at 7.25 ppm

doublet and septet together ???? What does it mean (isopropyl group)

7.25 ppm means aromatic area

8] Propose the structure of a compound that exhibits the following H-NMR data.

• C_8H_{10} [2.35 δ (6H, singlet) 7.09 (4H, singlet).

• $C_5H_{10}O$ [1.09 δ (6H, doublet) 2.12(3H, singlet) 2.58 (1H, septet)

• $C_4H_8O_2$ [1.21 δ (6H, doublet) 2.59 (1H, septet) 11.38 (1H, singlet)].

СН₃ I СН₃СНСООН

9] A compound with the molecular formula ($C_{10}H_{13}CI$) gave the following 1H NMR spectrum:

singlet, 1.6 ppm singlet, 3.1 ppm

multiplet, 7.2 ppm (5H)

The most likely structure for the compound is:

10] Choose the letter corresponding to the appropriate molecule that matches the spectrum.

NMR

$C_5H_{10}O_2$????

A] C₃H₇Cl ???

B] C₃H₇Cl ???

t t $H_2C \longrightarrow H_3C$ СН₃ О—СН₂ 3H 3H q q 2H 2H 4.5 1.0 PPM 3.5 3.0 2.5 2.Ò 1.5 4.0

NMR

(C₅H₁₀O₂) ???

43

```
(C<sub>10</sub>H<sub>12</sub>O) ????
```


19] Correlate each signal to its hydrogen. Explain briefly

20] Correlate each signal to its hydrogen. Explain briefly

p-Toluidine

21] Explain complex splitting in the following aromatic compounds.

26] Correlate each signal to its hydrogen. Explain briefly

27] In the following spectra; Correlate each signal to its hydrogen. Explain briefly

#