One compartment open model

Extravascular administration problems

 A single oral dose (100 mg) of an antibiotic was given to an adult male patient (43 years, 72 kg). From the literature, the pharmacokinetics of this drug fit a one compartment open model. The equation that best fits the pharmacokinetics of the

drug is

$$Cp = 45 \ (e^{-0.17*t} - e^{-1.5*t})$$

From the equation above, calculate (Assume C p is in g/mL and the first-order rate constants are in hours⁻¹)

(a)t max,

(b)C max

(c)t 1/2 for the drug in this patient.

2. Two drugs, A and B, have the following pharmacokinetic parameters after a single oral dose of 500

Drug	$K_a(hr^{-1})$	K (hr ⁻¹)	V _d (ml)
А	1.0	0.2	10,000
В	0.2	1.0	20,000

Both drugs follow a one-compartment pharmacokinetic model and are 100% bioavailable.

a. Calculate the t max for each drug.

b. Calculate the C max for each drug

3. from a comparative pharmacokinetic study of two cephalosporinic antibiotics, the following data are obtained

Pharmacokinetic parameters	Antibiotic (A)	Antibiotic (B)
Distribution	One compartment	One compartment
Administration	Oral	Oral
Vd (liter)	14	12
$K_a(hr^{-1})$	0.6	1.2
K (hr ⁻¹)	0.4	0.3
Lag time	0	0
t _{max}	2.02	1.54
$X_0 mg$	500	500

Supposing that the antimicrobial activity for both is the same. Which one is more suitable taking in consideration the following:

- a. The higher concentration level in the blood
- b. The one that has longer time in the body

Give analysis of your answer??

4. After 6 hours of the oral administration of a drug, the blood plasma concentration was $14\mu/ml$. taken in consideration that the drug distributes according to one-compartmental open model after extravascular administration of the drug and presents complete absorption, its constant rate of absorption K_a is 0.72 hr⁻¹, the constant rate of elimination is 0.15 hr⁻¹ and the apparent volume of distribution V_d is 13L.

Calculate the administered dose??

5. A drug is administered by intramuscular rout of administration and follow one compartmental open model; the pharmacokinetics parameters of this drug were:

 $K_a = 0.23 \ h^{\text{-1}}, \ K_e = 0.07 \ h^{\text{-1}}$ and the $V_d = 9L.$

After 4 hours the plasma concentration was 25 μ /ml, determine the administered dose??