Case-Control study

Problem

- 200 students appeared for Exam
- Only 90 passed, 110 failed
- Problem Why many students failed?

What is the reason?

- Analysis Possible reasons for failure
 - Question paper difficult No
 - Lecture taken Yes
 - Attended lecture All students did not attend.
- How do we know not attending the lecture is the correct reason?

Case Control study

Reason	Failed in exam (Problem +)	Pass (Problem -)	
Reason + (absent from lecture)	a	b	a+b
Reason '–' (present for lecture)	С	d	c+d
	a+c	b+d	

	Failed in exam (problem+)	Pass (Problem-)	
Reason '+' (absent from lecture)			a+b
Reason '' (present for lecture)			c+d
	110 (a+c)	90 (b+d)	200 •

	Failed in exam (problem+)	Pass (Problem-)	
Reason '+' (absent from lecture)	o 100 (a)	10 (b)	a+b
Reason '' (present for lecture)	10 (c)	80 (d)	c+d
	110 (a+c)	90 (b+d)	200

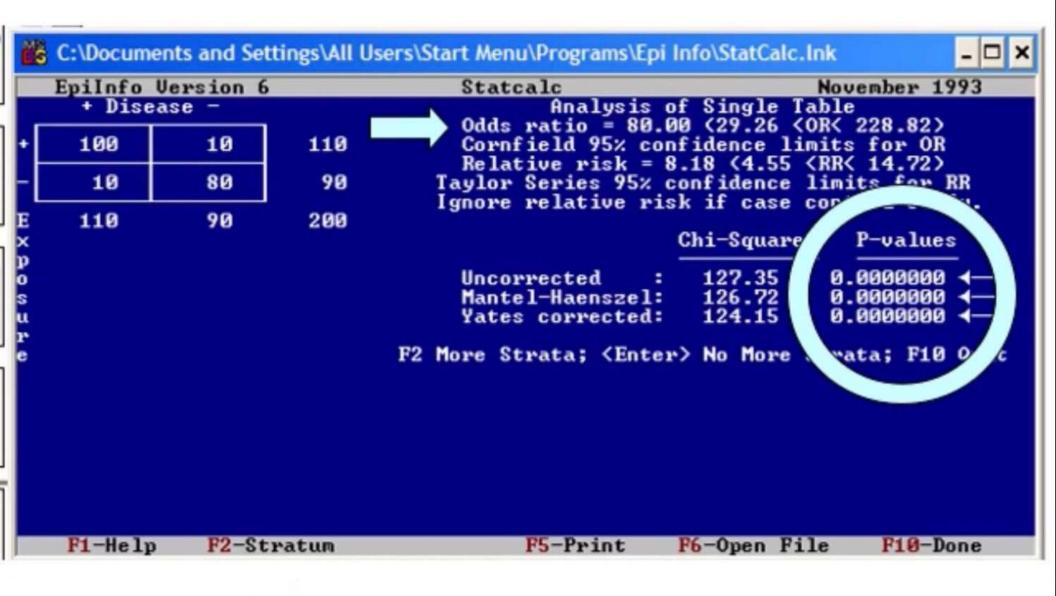
- Definition
- The Odds Ratio is a measure of *association* which compares the odds of disease of those exposed (cases) to the odds of disease those unexposed (control).
- Formulae
- OR = (odds of disease in exposed) / (odds of disease in the non-exposed)

odds of exposure in cases= No of cases
with exposure/ No of cases without
exposure = a/c

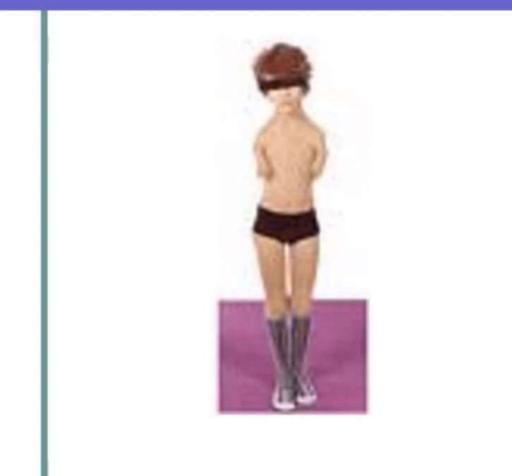
odds of exposure in control= No of controls with exposure/ No of controls without exposure = b/d

odds of exposure in cases = a/c = ad

odds of exposure in controls b/d bC


OR = <u>ad</u> bc

Odds ratio = axd/bxc 100x80/10x10


= 80

 Students not attending lecture has 80 times more chance of failing in the exam than those who attend the lecture.

This result is not by chance because P-value is < (less than) 0.05

Phocomelia

Phocomelia

- In 1950 many children in Europe were born with Phocomelia
- Doctors were worried. Why is this happening?
- They asked mothers of these children
 - Was there any problem during pregnancy? No
 - Did they suffer from any disease? No
 - Did they take any medicine? Yes Thalidomide for morning sickness

Thalidomide tragedy

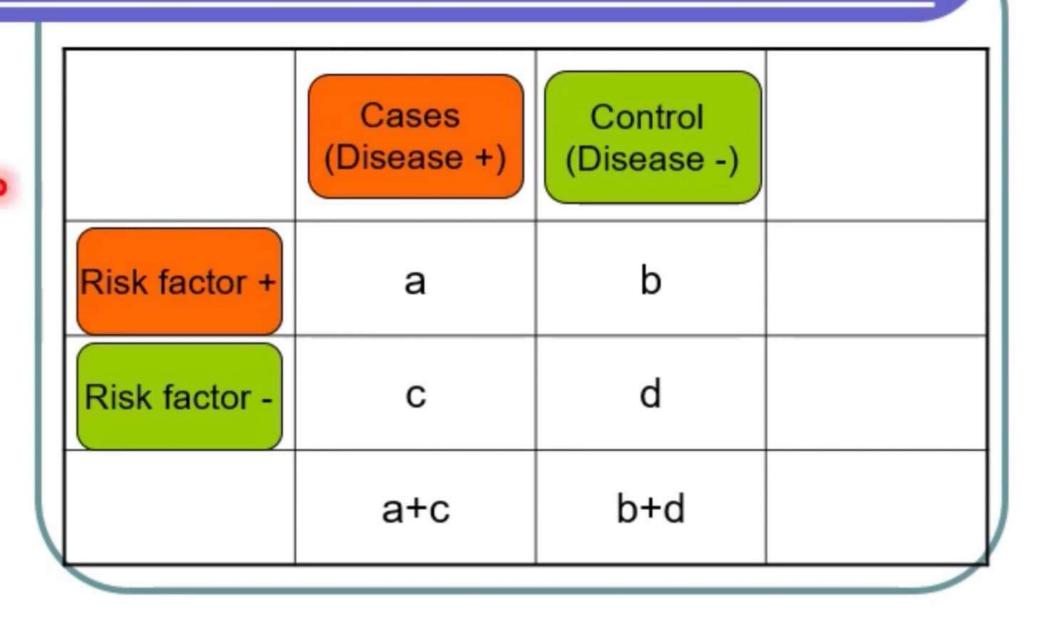
- They did a Case-Control study to find whether it is the reason
- Case-Control study proved that Thalidomide was the cause
- Thalidomide was banned

Analytical epidemiology

- We test whether there is an association between a disease and the suspected factor.
- We also measure the strength of association.

Case Control study

- Sometimes called 'retrospective study'
- Is the first step to test hypothesis
- Both cause and outcome (disease) have occurred before doing the study


Case Control study

- There is a control or comparison group to test the hypothesis
- This is the most important feature of Analytical epidemiology

Design of a Case Control study

	Cases (Disease+)	Control (Disease-)	
Risk factor present(+)	а	b	
Risk factor absent (-)	С	d	
	a+c	b+d	

Design of Case Control study

Steps in a Case Control study

- Selection of cases and controls
- Matching
- Measurement of exposure to risk factor
- Analysis and interpretation

Selection of Cases

Cases selected should have the correct diagnosis

 Only cases with the confirmed diagnosis should be included

Selection of Controls

- Controls must be FREE from the disease under study.
- If there are sub-clinical cases, do laboratory test to make sure that the person has no disease

Sources of controls

- Hospitals (patients having other disease)
- Neighborhood controls
- General population
- How many controls will you take for a case?
 - In large studies generally 1
 - In small studies (below 50) up to 4

Matching

- Matching is a process by which we select controls in a such a way that they are similar to cases in important variables
- Age, Sex, Occupation etc.
- By matching we can neutralize any confounding factor.

Matching - examples

- For studying Lung cancer the Controls should be males and **not** females
- For studying Lung cancer the Controls should be adult males and **not** small boys
- For studying Breast cancer the controls should be females and **not** males!
- For studying Breast cancer the controls should be adult females and **not** small girls

Measurement of exposure to cause

- There must be a clear Definition for the risk factor.
- That should be same for Cases and Controls
- E.g. Smoking- number of cigarettes, duration of smoking, type of cigarette etc.

Analysis

Calculate exposure rates among cases and controls Calculate the disease risk associated with exposure (Odds ratio)

Analysis

	Cases (Lung cancer +)	Controls (No lung cancer)
Smoking +	33(a)	55(b)
Smoking -	2(c)	27(d)
	35(a+c)	82(b+d)

Exposure rate to smoking

Cases = a/a+c 33/35 = 94.2%

Controls = b/b+d 55/82 = 67%

Estimation of risk

- Those who are having lung cancer are smoking more(94.2%)
- However it does not mean that 94.2% of all smokers will develop lung cancer.
- We estimate risk to develop lung cancer in smokers by calculating 'Odds ratio'

Odds ratio

Odds ratio = ad/bc 33x27/55x2 = 8.1

Those who smoke have 8.1 times the risk of developing Lung cancer than those who do not smoke

- If the odds ratio is 1 means **no** risk or exposure doesn't affect odds of the disease.
- OR > 1 exposure associated with higher odds of disease.

 OR< 1 exposure associated with lower odds of disease.

P- value

- We have found cigarette smokers has 8.1 times more risk of getting Lung cancer
- There are thousands of Lung cancer patients in the world
- We have taken only a small sample of 35 cases
- How do we know it is true for all lung cancer patients?

P-value

- To see if this association is due to chance.
- It is the probability that the difference is due to chance
- If P value is <0.05 it is considered statistically significant.

P value in lung cancer study is <0.001

Analysis - 🗆 🗙 C:\DOCUME~1\IBMTHI~1\Desktop\STATCALC.EXE **EpiInfo Version 6** Statcalc November 1993 + Disease -Analysis of Single Table Odds ratio = 8.10 (1.70 < OR < 52.74*)33 55 88 Cornfield 95% confidence limits for OR *Cornfield not accurate. Exact limits preferred. 2 27 29 Relative risk = 5.44 (1.39 (RR(21.28) Taylor Series 95% confidence limits from RR 35 82 117 Ignore relative risk if case cor Chi-Square P-values 0 9.74 0017994 s Uncorrected Й. 9.66 Mantel-Haenszel: 0.0018828 lu, Yates corrected: 8.34 0.0038809 F2 More Strata; (Enter) No More sata; F10 0 F1-Help F5-Print F6-Open File F10-Done F2-Stratum

CC study - advantages

- Easy to conduct
- Inexpensive
- No risk to people
- No attrition (loss of patients) problems
- No ethical problems

CC study - disadvantages

- Problem of accuracy of data
 - Loss of memory
 - How many cigarettes a person smoked 20 years ago?
 - Incomplete records
 - What medicine a lady took in pregnancy?
- Getting good controls is difficult

Summary

- Case Control study is used to test hypothesis
- It involves four steps
 - Selection of cases and controls
 - Matching
 - Measuring exposure
 - Analysis (Exposure rate, Odds ratio and P value)

- The analysis of Case Control study is by a 2x2 design
- Exposure rates are calculated among cases and controls

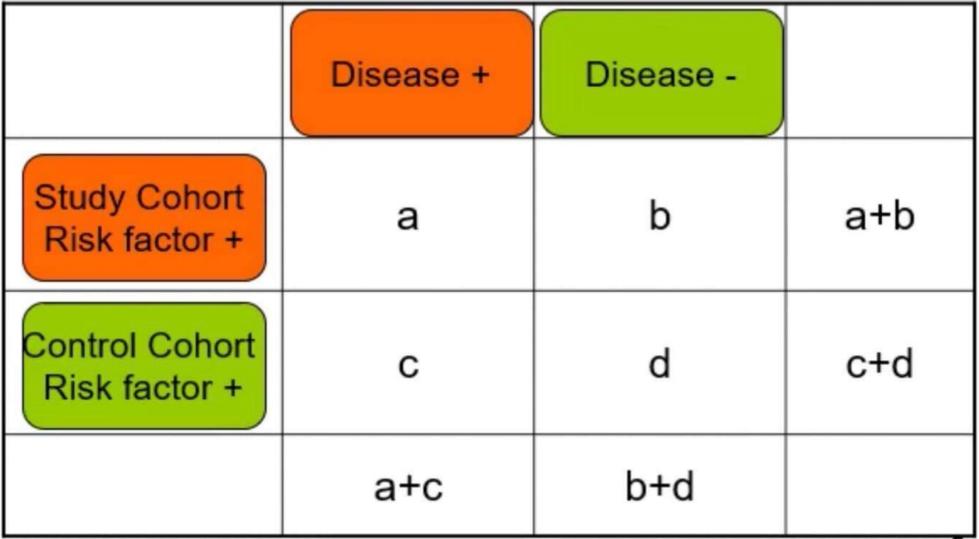
	Dis +	Dis -	
RF +	а	b	
RF -	С	d	
	a+c	b+d	

- Odds ratio is calculated to estimate the risk of disease among those who are exposed to the cause
- P value is calculated to know whether the difference is statistically significant

Cohort study

Cohort

Is a group of people who share a common characteristic or experience People born on a same day Students who joined college in a year People doing same work e.g. doctors


Cohort study

- Also called Prospective study or Incidence study.
- Is usually done after doing Case-Control study to get more proof of the cause of disease.
- The study is done on people before the disease occurs.

Design of Cohort study

	Disease +	Disease -	
Study conort (Risk factor +)	а	b	a+b
Control cohort (Risk factor -)	С	d	c+d
	a+c	b+d	

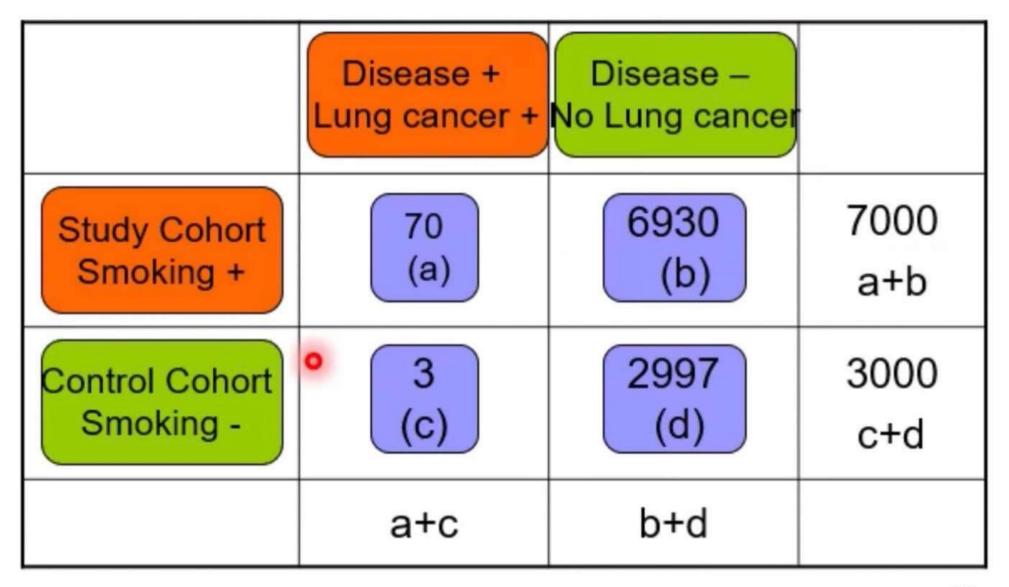
Design of Cohort study

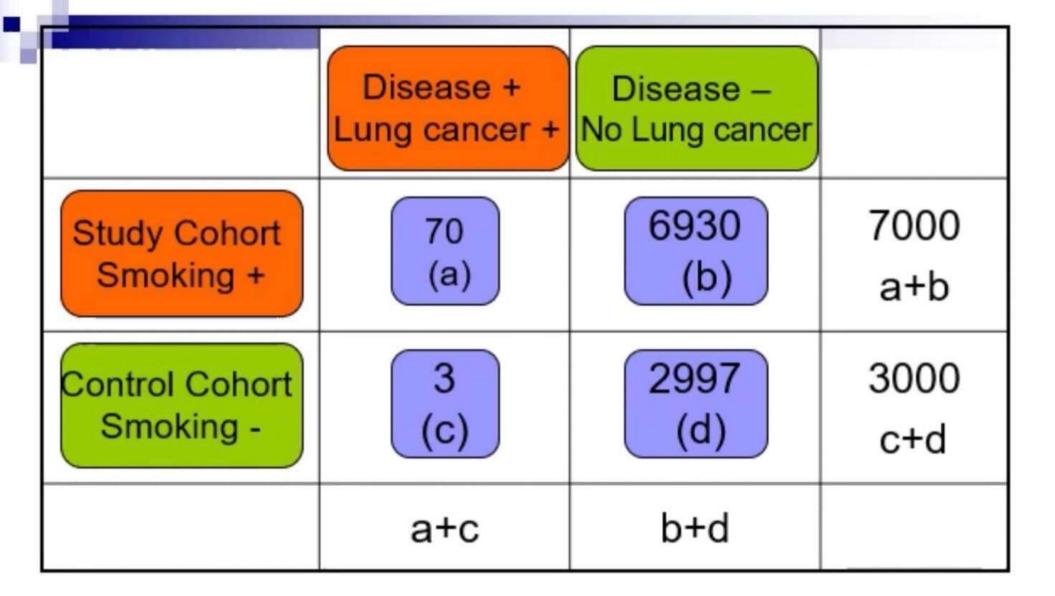
Elements of a Cohort study

- 1. Selection of study Cohort
- Selection of comparison (Control) Cohort
- 3. Data collection and Follow-up
- 4. Analysis and interpretation

Selection of Study Cohort

- They are selected from general population or from specific groups e.g. Doctors, students etc.
- Members of the study cohort must NOT have the disease.
- Members of the study cohort must be exposed to the risk factor.


Selection of Control Cohort


- They are selected from general population or from specific groups e.g. Doctors, students etc.
- Members of the control cohort must NOT have the disease.
- Members of the control cohort must NOT be exposed to the risk factor.
- Members of the control cohort must be similar to the study cohort in age, sex etc.

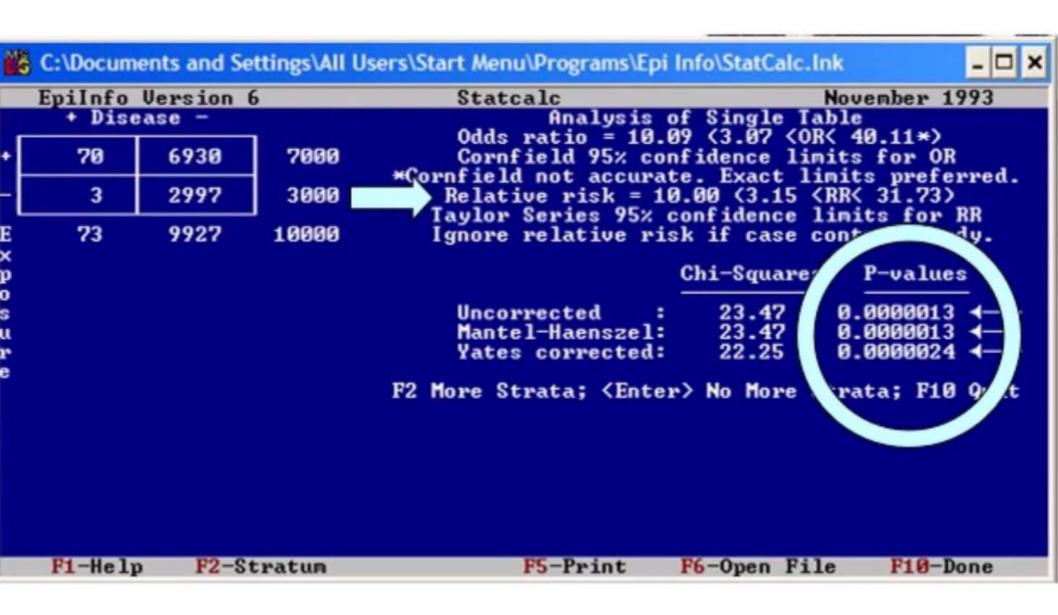
Follow up

- Both the Study cohort and Control cohort is followed up to see how many develop the disease.
- This is done by
 - Medical examination
 - Personal visit, Phone call etc.
- Follow up is difficult because some persons will not respond.

Smoking and Lung cancer

Incidence rate among smokers = 70/7000 = 10 per 1000 Incidence rate among non-smokers = 3/3000 = 1 per 1000

Relative risk =


Incidence of disease among exposed

Incidence of disease among non-exposed 10/1= 10

- Relative risk of 10 means that those who smoke have 10 times more risk of developing lung cancer than those who are not smoking.
- If relative risk is 1, that means there is no risk.

P value

- There are many millions of cigarette smokers.
- We have studied only 7000.
- We have to know whether the Relative Risk of 10 is by chance or not.
- We calculate the P value. If the P value is less than(<) 0.05 we accept the Relative Risk.
- P value in our Lung cancer study is <0.001</p>

This result is not by chance because P-value is < (less than) 0.05.

Advantage of Cohort study

- Incidence of disease can be calculated.
- More than one disease due to the risk factor can be studied.
 - Smoking and Lung cancer, peptic ulcer, Coronary heart disease etc.
- Gives better proof of the risk factor than Case Control study.

Disadvantages

- It takes long time to complete study.
- Persons may lose interest and will not come for follow-up.
- The person who is doing the study may lose interest or take another job.
- Cohort studies are expensive.
- Has more ethical problems.

- Cohort study gives better proof of the cause of disease.
- A group of people (Study Cohort) with the risk factor is selected.
- Another group of people (Control Cohort) without the risk factor is selected.
- Both groups are followed up to see how many develop disease.

- Incidence rate of disease is calculated among study cohort.
- Incidence rate of disease is calculated among the control cohort.
- Relative risk is calculated.
- Cohort study is more difficult and expensive than Case Control study.